Skip to main content
Log in

4-Amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) pH sensors as liposomal cellular imaging agents: The effect of substituent patterns on PET directional quenching

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Four new fluorescent sensors (1–4) based on the 4-amino-1,8-naphthalimide fluorophores (Naps) have been synthesized based on the classical fluorophorespacer-receptor model. These four compounds all gave rise to emission bands centred at ca. 535 nm, which were found to be highly pH dependent, the emission being ‘switched on’ in acidic media, while being quenched due to PET from the amino moieties to the excited state of the Nap at more alkaline pH. The luminescent pH dependence for these probes was found to be highly dependent on the substitution on the imide site, as well as the polyamine chain attached to the position 4-amino moiety. In the case of sensor 2 the presence of the 4-amino-aniline dominated the pH dependent quenching. Nevertheless, at higher pH, PET quenching was also found to occur from the polyamine site. Hence, 2 is better described as a receptor1-spacer1-fluorophore-spacer2-receptor2 system, where the dominant PET process is due to (normally less favourable) ‘directional’ PET quenching from the 4-amino-aniline unit to the Nap site. Similar trends and pH fluorescence dependences were also seen for 3 and 4. These compounds were also tested for their imaging potential and toxicity against HeLa cells (using DRAQ5 as nuclear stain which does now show pH dependent changes in acidic and neutral pH) and the results demonstrated that these compounds have reduced cellular viability at moderately high concentrations (with IC50 values between ca. 8–30 µmol·L−1), but were found to be suitable for intracellular pH determination at 1 µmol ·L−1concentrations, where no real toxicity was observed. This allowed us to employ these as lysosomal probes at sub-toxic concentrations, where the Nap based emission was found to be pH depended, mirroring that seen in aqueous solution for 1–4, with the main fluorescence changes occurring within acidic to neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J, James T D. Fluorescent chemosensors: The past, present and future. Chemical Society Reviews, 2017, 46(23): 7105–7123

    CAS  PubMed  Google Scholar 

  2. Chang C J, Gunnlaugsson T, James T D. Sensor targets. Chemical Society Reviews, 2015, 44(13): 4176–4178

    CAS  PubMed  Google Scholar 

  3. Casey J R, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nature Reviews. Molecular Cell Biology, 2010, 11(1): 50–61

    CAS  PubMed  Google Scholar 

  4. Clark H A, Hoyer M, Philbert M A, Kopelman R. Optical nanosensors for chemical analysis inside single living cells. 1. Sensors for pH and calcium and the intracellular application of PEBBLE sensors I. Analytical Chemistry, 1999, 71(21): 4831–4836

    CAS  PubMed  Google Scholar 

  5. Veale E B, Gunnlaugsson T. Fluorescent sensors for ions based on organic structures. Annual Reports Section “B” (Organic Chemistry), 2010, 106: 376–406

    CAS  Google Scholar 

  6. Han J, Burgess K. Indicators for intracellular pH. Chemical Reviews, 2010, 110(5): 2709–2728

    CAS  PubMed  Google Scholar 

  7. Daly B, Ling J, de Silva A P. Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chemical Society Reviews, 2015, 44(13): 4203–4211

    CAS  PubMed  Google Scholar 

  8. Duke R M, Veale E B, Pfeffer F M, Kruger P E, Gunnlaugsson T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chemical Society Reviews, 2010, 39(10): 3936–3953

    CAS  PubMed  Google Scholar 

  9. Banerjee S, Veale E B, Phelan C M, Murphy S A, Tocci G M, Gillespie L J, Frimannsson D O, Kelly J M, Gunnlaugsson T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chemical Society Reviews, 2013, 42(4): 1601–1618

    CAS  PubMed  Google Scholar 

  10. Shanmugaraju S, la Cour Poulsen B, Arisa T, Umadevi D, Dalton H L, Hawes C S, Savyasachi A J, Watson G W, Williams D C, Gunnlaugsson T. Synthesis, structural characterisation and antiproliferative activity of a new fluorescent 4-amino-1,8-naphthalimide Tröger’s base-Ru(II)-curcumin organometallic conjugate. Chemical Communications, 2018, 54(33): 4120–4123

    CAS  PubMed  Google Scholar 

  11. Shanmugaraju S, Hawes C S, Savyasachi A J, Blasco S, Kitchen J A, Gunnlaugsson T. Supramolecular coordination polymers using a close to ‘V-shaped’ fluorescent 4-amino-1,8-naphthalimide Tröger’s base scaffold. Chemical Communications, 2017, 53(93): 12512–12515

    CAS  PubMed  Google Scholar 

  12. Shanmugaraju S, McAdams D, Pancotti F, Hawes C S, Veale E B, Kitchen J A, Gunnlaugsson T. One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger’s bases via a nucleophilic displacement approach. Organic & Biomolecular Chemistry, 2017, 15(35): 7321–7329

    CAS  Google Scholar 

  13. Shanmugaraju S, Dabadie C, Byrne K, Savyasachi A J, Umadevi D, Schmitt W, Kitchen J A, Gunnlaugsson T. A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science (Cambridge), 2017, 8(2): 1535–1546

    CAS  Google Scholar 

  14. Tian Y, Su F, Weber W, Nandakumar V, Shumway B R, Jin Y, Zhou X, Holl M R, Johnson R H, Meldrum D R. A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials, 2010, 31(29): 7411–7422

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ao X, Bright S A, Taylor N C, Elmes R B P. 2-Nitroimidazole based fluorescent probes for nitroreductase; monitoring reductive stress in cellulo. Organic & Biomolecular Chemistry, 2017, 15(29): 6104–6108

    CAS  Google Scholar 

  16. Jia T, Fu C, Huang C, Yang H, Jia N. Highly sensitive naphthalimide-based fluorescence polarization probe for detecting cancer cells. ACS Applied Materials & Interfaces, 2015, 7(18): 10013–10021

    CAS  Google Scholar 

  17. Lee M H, Han J H, Kwon P S, Bhuniya S, Kim J Y, Sessler J L, Kang C, Kim J S. Hepatocyte-targeting single galactose-appended naphthalimide: A tool for intracellular thiol imaging in vivo. Journal of the American Chemical Society, 2012, 134(2): 1316–1322

    CAS  PubMed  Google Scholar 

  18. Dong L, Zang Y, Zhou D, He X P, Chen G R, James T D, Li J. Glycosylation enhances the aqueous sensitivity and lowers the cytotoxicity of a naphthalimide zinc ion fluorescence probe. Chemical Communications, 2015, 51(59): 11852–11855

    CAS  PubMed  Google Scholar 

  19. Li X, Lin Y, Wang Q, Yuan Y, Zhang H, Qian X. The novel antitumor agents of 4-triazol-1,8-naphthalimides: Synthesis, cytotoxicity, DNA intercalation and photocleavage. European Journal of Medicinal Chemistry, 2011, 46(4): 1274–1279

    CAS  PubMed  Google Scholar 

  20. Zhang L, Lei K, Zhang J, Song W, Zheng Y, Tan S, Gao Y, Xu Y, Liu J, Qian X. One small molecule as a theranostic agent: Naphthalimide dye for subcellular fluorescence localization and photodynamic therapy in vivo. MedChemComm, 2016, 7(6): 1171–1175

    CAS  Google Scholar 

  21. Banerjee S, Kitchen J A, Gunnlaugsson T, Kelly J M. The effect of the 4-amino functionality on the photophysical and DNA binding properties of alkyl-pyridinium derived 1,8-naphthalimides. Organic & Biomolecular Chemistry, 2013, 11(34): 5642–5655

    CAS  Google Scholar 

  22. Banerjee S, Kitchen J A, Gunnlaugsson T, Kelly J M. Synthesis and photophysical evaluation of a pyridinium 4-amino-1,8-naphthalimide derivative that upon intercalation displays preference for AT-rich double-stranded DNA. Organic & Biomolecular Chemistry, 2012, 10(15): 3033–3043

    CAS  Google Scholar 

  23. Li M, Guo Z, Zhu W, Marken F, James T D. A redox-activated fluorescence switch based on a ferrocene-fluorophore-boronic ester conjugate. Chemical Communications, 2015, 51(7): 1293–1296

    CAS  PubMed  Google Scholar 

  24. Li M, Ge H, Mirabello V, Arrowsmith R L, Kociok-Kohn G, Botchway S W, Zhu W, Pascu S I, James T D. Lysosomal tracking with a cationic naphthalimide using multiphoton fluorescence lifetime imaging microscopy. Chemical Communications, 2017, 53(81): 11161–11164

    CAS  PubMed  Google Scholar 

  25. Li M, Ge H, Arrowsmith R L, Mirabello V, Botchway S W, Zhu W, Pascu S I, James T D. Ditopic boronic acid and imine-based naphthalimide fluorescence sensor for copper(II). Chemical Communications, 2014, 50(80): 11806–11809

    CAS  PubMed  Google Scholar 

  26. Hearn K N, Nalder T D, Cox R P, Maynard H D, Bell T D M, Pfeffer F M, Ashton T D. Modular synthesis of 4-aminocarbonyl substituted 1,8-naphthalimides and application in single molecule fluorescence detection. Chemical Communications, 2017, 53(91): 12298–12301

    CAS  PubMed  Google Scholar 

  27. Fleming C L, Natoli A, Schreuders J, Devlin M, Yoganantharajah P, Gibert Y, Leslie K G, New E J, Ashton T D, Pfeffer F M. Highly fluorescent and HDAC6 selective scriptaid analogues. European Journal of Medicinal Chemistry, 2019, 162: 321–333

    CAS  PubMed  Google Scholar 

  28. Spiteri J C, Johnson A D, Denisov S A, Jonusauskas G, McClenaghan N D, Magri D C. A fluorescent AND logic gate based on a ferrocene-naphthalimide-piperazine format responsive to acidity and oxidizability. Dyes and Pigments, 2018, 157: 278–283

    CAS  Google Scholar 

  29. Spiteri J C, Denisov S A, Jonusauskas G, Klejna S, Szacilowski K, McClenaghan N D, Magri D C. Molecular engineering of logic gate types by module rearrangement in ‘Pourbaix sensors’: The effect of excited-state electric fields. Organic & Biomolecular Chemistry, 2018, 16(34): 6195–6201

    CAS  Google Scholar 

  30. Johnson A D, Paterson K A, Spiteri J C, Denisov S A, Jonusauskas G, Tron A, Magri D C. Water-soluble naphthalimide-based “Pourbaix sensors”: pH and redox-activated fluorescent AND logic gates based on photoinduced electron transfer. New Journal of Chemistry, 2016, 40(12): 9917–9922

    CAS  Google Scholar 

  31. Banerjee S, Kitchen J A, Bright S A, O’Brien J E, Williams D C, Kelly J M, Gunnlaugsson T. Synthesis, spectroscopic and biological studies of a fluorescent Pt(II) (terpy) based 1,8-naphthalimide conjugate as a DNA targeting agent. Chemical Communications, 2013, 49(76): 8522–8524

    CAS  PubMed  Google Scholar 

  32. Calatrava-Pérez E, Bright S A, Achermann S, Moylan C, Senge M O, Veale E B, Williams D C, Gunnlaugsson T, Scanlan E M. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated ‘Pro-probes’. Chemical Communications, 2016, 52(89): 13086–13089

    PubMed  Google Scholar 

  33. Elmes R B P, Erby M, Bright S A, Williams D C, Gunnlaugsson T. Photophysical and biological investigation of novel luminescent Ru (II)-polypyridyl-1,8-naphthalimide Tröger’s bases as cellular imaging agents. Chemical Communications, 2012, 48(20): 2588–2590

    CAS  PubMed  Google Scholar 

  34. Zheng S, Lynch P L M, Rice T E, Moody T S, Gunaratne H Q N, de Silva A P. Structural effects on the pH-dependent fluorescence of naphthalenic derivatives and consequences for sensing/switching. Photochemical & Photobiological Sciences, 2012, 11(11): 1675–1681

    CAS  Google Scholar 

  35. Daly B, Ling J, de Silva A P. Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chemical Society Reviews, 2015, 44(13): 4203–4211

    CAS  PubMed  Google Scholar 

  36. Calatrava-Pérez E, Delente J M, Shanmugaraju S, Hawes C S, Williams C D, Gunnlaugsson T, Scanlan E M. Glycosylated naphthalimides and naphthalimide Tröger’s bases as fluorescent aggregation probes for Con A. Organic & Biomolecular Chemistry, 2019, 7(8): 2116–2125

    Google Scholar 

  37. Duke R M, Gunnlaugsson T. 3-Urea-1,8-naphthalimides are good chemosensors: A highly selective dual colorimetric and fluorescent ICT based anion sensor for fluoride. Tetrahedron Letters, 2011, 52(13): 1503–1505

    CAS  Google Scholar 

  38. Gunnlaugsson T, McCoy C P, Morrow R J, Phelan C, Stomeo F. Towards the development of controllable and reversible ‘on-off’ luminescence switching in soft-matter: Synthesis and spectroscopic investigation of 1,8-naphthalimide-based PET (photoinduced electron transfer) chemosensors for pH in water-permeable hydrogels. ARKIVOC, 2003, 7: 216–228

    Google Scholar 

  39. de Silva A P, Gunaratne H Q N, Habib-Jiwan J L, McCoy C P, Rice T E, Soumillion J P. New fluorescent model compounds for the study of photoinduced electron transfer: The influence of a molecular electric field in the excited state. Angewandte Chemie International Edition in English, 1995, 34(16): 1728–1731

    Google Scholar 

  40. Veale E B, Gunnlaugsson T. Bi-directional photoinduced electron transfer (PET) quenching is observed in 4-amino-1,8-naphthalimide based fluorescent anion sensors. Journal of Organic Chemistry, 2008, 73(20): 8073–7076

    CAS  Google Scholar 

  41. Rice T E, de Silva A P. A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC). Chemical Communications, 1999: 163–164

  42. Magri D C, de Silva A P. From PASS 1 to YES to AND logic: Building parallel processing into molecular logic gates by sequential addition of receptors. New Journal of Chemistry, 2010, 34(3): 476–481

    CAS  Google Scholar 

  43. Veale E B, Kitchen J A, Gunnlaugsson T. Fluorescent tren-based 4-amino-1,8-naphthalimide sensor for Cu(II) based on the use of the (fluorophore-spacer-receptor) photoinduced electron transfer (PET) principle. Supramolecular Chemistry, 2013, 25(2): 101–108

    CAS  Google Scholar 

  44. Qian J, Xu Y, Qian X, Wang J, Zhang S. Effects of anionic surfactant SDS on the photophysical properties of two fluorescent molecular sensors. Journal of Photochemistry and Photobiology A Chemistry, 2008, 200(2–3): 402–409

    CAS  Google Scholar 

  45. Zhou L, Jin Z, Fan X, Yao Y, Zhaoyang C, Zhang W, Qian J. Synthesis of 1,8-naphthalimide-based fluorescent nano-probes and their application in pH detection. Chinese Chemical Letters, 2018, 29(10): 1500–1502

    CAS  Google Scholar 

  46. de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Lynch P L M. Molecular photoionic switches with an internal reference channel for fluorescent pH sensing applications. New Journal of Chemistry, 1996, 20(7–8): 871

    CAS  Google Scholar 

  47. Gao Y Q, Marcus R A. Theoretical investigation of the directional electron transfer in 4-aminonaphthalimide compounds. Journal of Physical Chemistry A, 2002, 106(10): 1956–1960

    CAS  Google Scholar 

  48. Veale E B, Gunnlaugsson T. Synthesis, photophysical and DNA binding studies of fluorescent Tröger’s base derived 4-amino-1,8-naphthalimide supramolecular clefts. Journal of Organic Chemistry, 2010, 75(16): 5513–5525

    CAS  Google Scholar 

  49. Ryan G J, Poynton F E, Elmes R B P, Erby M, Williams D C, Quinn S J, Gunnlaugsson T. Unexpected DNA binding properties with correlated downstream biological applications in mono vs. bis-1,8-naphthalimide Ru(II)-polypyridyl conjugates. Dalton Transactions (Cambridge, England), 2015, 44(37): 16332–16344

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Science Foundation Ireland (SFI PI Award 13/IA/1865 to TG) and TCD for financial support. We also thank the Ministerio of Economía y Competitividad of Spain and The Irish Research Council (IRC) for the funding of postdoctoral fellowships to MMC and AFH (GOIPD/2018/162), respectively. We thank Dr J. E. O’Brien, M. Reuther and G. Hessman (School of Chemistry, TCD) for assisting with NMR and MS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Martínez-Calvo or Thorfinnur Gunnlaugsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Calvo, M., Bright, S.A., Veale, E.B. et al. 4-Amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) pH sensors as liposomal cellular imaging agents: The effect of substituent patterns on PET directional quenching. Front. Chem. Sci. Eng. 14, 61–75 (2020). https://doi.org/10.1007/s11705-019-1862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1862-8

Keywords

Navigation