Skip to main content
Log in

Post-buckling optimization of two-dimensional functionally graded porous beams

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In the present study, an attempt is made to present the governing equations on the post-buckling of two-dimensional (2D) FGP beams and propose appropriate optimization procedure to achieve optimal post-buckling behavior and mass. To this end, Timoshenko beam theory, Von-Karman nonlinear relations, virtual work principle, and generalized differential quadrature method are considered to derive and solve governing equations and associated boundary condition (Hinged–Hinged) for an unknown 2D porosity distribution. Proposed method is validated using the papers in the literature. The optimization procedure including defining porosity distributions (interpolations), post-buckling function and Taguchi method is then proposed to optimize the post-buckling path and minimize the mass of the 2D-FGP beams. Results indicate that, great improvement can be achieved by optimizing the porosity distribution; for an identical mass, the post-buckling paths of optimum points are closer to desired path (dense structure). The difference between uniform and non-uniform porosity distributions is more (58% higher post buckling function), at higher values of the mass. Optimum distributions mostly have the higher values of porosity at center line of the beam and minimum values at outer line. Analysis of variance is also provided to create a better understanding about design points contributions on the post-buckling path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Arghavani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, M., Arghavani, J. & Maboudi, G. Post-buckling optimization of two-dimensional functionally graded porous beams. Int J Mech Mater Des 15, 801–815 (2019). https://doi.org/10.1007/s10999-019-09443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09443-3

Keywords

Navigation