Skip to main content

Advertisement

Log in

Boussinesq problem with the surface effect based on surface energy density

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Surface effect plays an important role in nanosized materials. In this paper, two-dimensional Boussinesq problem with the surface effect is systematically investigated based on Chen–Yao’s surface elastic theory, in which surface effect on mechanical properties of materials is considered based on the concept of surface energy density. The Fourier integral transform method is adopted to derive the contact stress and displacement fields of the Boussinesq problem. As two examples, the deformations induced, respectively, by a uniform distributed pressure and a concentrated force are analyzed in detail. The theoretical result in this paper show that the surface energy density of the indented bulk substrate, as only one additional parameter, serves as an important factor to influence the contact properties in contrast to the classical contact models. The numerical results show that the semi-infinite substrate becomes hardened when the surface effect is considered. Scaling analysis further indicates that only when the ratio of the contact width to the volume surface energy density to the shear modulus is equal, the difference between the theoretical prediction of surface effect and the classical contact solution without surface effect will be significant. The results provide a further understanding of the surface effect of nanomaterials, which should be helpful for the design and accurate evaluation of service performance of nanoscale devices or nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    MathSciNet  MATH  Google Scholar 

  • Begley, M.R., Hutchinson, J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46(10), 2049–2068 (1998)

    MATH  Google Scholar 

  • Tao, C.J.: The influence of indenter tip radius to micro-indentation tests. Acta. Mech. Sin. 36(6), 680–687 (2004)

    MathSciNet  Google Scholar 

  • Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)

    Google Scholar 

  • Chen, S.H., Wang, T.C.: A new deformation theory with strain gradient effects. Int. J. Plast 18(8), 971–995 (2002)

    MATH  Google Scholar 

  • Chen, W.Q., Zhang, C.: Anti-plane shear Green’s functions for an isotropic elastic half-space with a material surface. Int. J. Solids Struct. 47(11–12), 1641–1650 (2010)

    MATH  Google Scholar 

  • Chen, S., Yao, Y.: Elastic theory of nanomaterials based on surface-energy density. J. Appl. Mech. 81(12), 121002 (2014)

    Google Scholar 

  • Gao, X., Hao, F., Fang, D., Huang, Z.: Boussinesq problem with the surface effect and its application to, contact mechanics at the nanoscale. Int. J. Solids Struct. 50(16–17), 2620–2630 (2013)

    Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    MATH  Google Scholar 

  • He, L.H., Lim, C.W.: Surface green function for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43(1), 132–143 (2006)

    MATH  Google Scholar 

  • He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93(26), 263108 (2008)

    Google Scholar 

  • Horstemeyer, M.F., Baskes, M.I.: Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. J. Eng. Mater. Technol. 121(121), 114–119 (1999)

    Google Scholar 

  • Huang, Y., Zhang, F., Hwang, K.C., Nix, W.D., Pharr, G.M., Feng, G.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54(8), 1668–1686 (2006)

    MATH  Google Scholar 

  • Huang, Z.P., Wang, J.: Erratum to: a theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182(3–4), 195–210 (2006)

    MATH  Google Scholar 

  • Jia, N., Yao, Y., Yang, Y., Chen, S.: Size effect in the bending of a Timoshenko nanobeam. Acta Mech. 228, 2363–2375 (2017a)

    MathSciNet  MATH  Google Scholar 

  • Jia, N., Yao, Y., Yang, Y., Chen, S.: Analysis of two-dimensional contact problems considering surface effect. Int. J. Solids Struct. 125, 172–183 (2017b)

    Google Scholar 

  • Koguchi, H.: Surface Green function with surface stresses and surface elasticity using stroh’s formalism. J. Appl. Mech. 75(6), 061014–061025 (2008)

    Google Scholar 

  • Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  • Lei, D.X., Ou, Z.Y., Wang, L.Y.: Elastic analysis for nanocontact problem with surface stress effects under shear load. J. Nanomater. 2012(6), 4531–4531 (2012)

    Google Scholar 

  • Long, J.M., Wang, G.F., Feng, X.Q., Yu, S.W.: Two-dimensional hertzian contact problem with surface tension. Int. J. Solids Struct. 49(13), 1588–1594 (2012)

    Google Scholar 

  • Long, J.M., Wang, G.F.: Effects of surface tension on axisymmetric hertzian contact problem. Mech. Mater. 56, 65–70 (2013)

    Google Scholar 

  • Long, J., Wang, G., Feng, X.Q., Yu, S.: Effects of surface tension on the adhesive contact between a hard sphere and a soft substrate. Int. J. Solids Struct. 84, 133–138 (2016)

    Google Scholar 

  • Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Google Scholar 

  • Miller, R.E., Shenoy, V.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    Google Scholar 

  • Mi, C.: Surface mechanics induced stress disturbances in an elastic half-space subjected to tangential surface loads. Eur. J. Mech. A. Solids 65, 59–69 (2017)

    MathSciNet  MATH  Google Scholar 

  • Nix, W.D., Gao, H.: Indentation size effect in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    MATH  Google Scholar 

  • Nguyen, T., Rungamornrat, J., Senjuntichai, T.: Analysis of planar cracks in 3d elastic media with consideration of surface elasticity. Int. J. Fract. 202(1), 51–77 (2016)

    MATH  Google Scholar 

  • Ouyang, G., Tan, X., Yang, G.W.: Thermodynamic model of the surface energy of nanocrystals. Phy. Rev. B 74(19), 195408 (2006)

    Google Scholar 

  • Ouyang, G., Li, X.L., Tan, X., Yang, G.W.: Surface energy of nanowires. Nanotechnology 19(4), 045709 (2008)

    Google Scholar 

  • Ouyang, G., Wang, C.X., Yang, G.W.: Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 109(9), 4221–4247 (2009)

    Google Scholar 

  • Poncharal, P., Wang, Z.L., Ugarte, D., De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Google Scholar 

  • Prieto, G., Zecevic, J., Friedrich, H., De Jong, K.P., De Jongh, P.E.: Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12(1), 34–39 (2013)

    Google Scholar 

  • Rogers, J.A., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Google Scholar 

  • Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)

    Google Scholar 

  • Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nanoinclusions incorporating surface/interface energies. J. Appl. Mech. 71(5), 663–671 (2004)

    MATH  Google Scholar 

  • Sharma, P., Wheeler, L.T.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J. Appl. Mech. 74(3), 447–454 (2007)

    MathSciNet  MATH  Google Scholar 

  • Selvadurai, A.P.S.: Partial Differential Equations in Mechanics. Springer, New York (2000)

    MATH  Google Scholar 

  • Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 4104 (2005)

    Google Scholar 

  • Streitz, F.H., Cammarata, R.C., Sieradzki, K.: Surface-stress effects on elastic properties. I. Thin metal films. Phys. Rev. B: Condens. Matter 49(15), 10699–10706 (1994a)

    Google Scholar 

  • Streitz, F.H., Cammarata, R.C., Sieradzki, K.: Surface-stress effects on elastic properties. II. Metallic multilayers. Phys. Rev. B: Condens. Matter 49(15), 10707–10716 (1994b)

    Google Scholar 

  • Takrori, F.M., Ayyad, A.: Surface energy of metal alloy nanoparticles. Appl. Surf. Sci. 401, 65–68 (2016)

    Google Scholar 

  • Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, T.J., Gerberich, W.W.: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49(6), 1021–1034 (2001)

    Google Scholar 

  • Vasu, T.S., Bhandakkar, T.K.: A study of the contact of an elastic layer-substrate system indented by a long rigid cylinder incorporating surface effects. J. Appl. Mech. 83(6), 061009 (2016)

    Google Scholar 

  • Voyiadjis, G.Z., Al-Rub, R.K.A.: Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)

    MATH  Google Scholar 

  • Wang, Y., Hu, J., Lin, Y., Nan, C.W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2(2), 61–68 (2010)

    Google Scholar 

  • Wang, G.F., Feng, X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101(1), 13510 (2007)

    Google Scholar 

  • Yao, Y., Wei, Y., Chen, S.H: Size effect of the surface energy density of nanoparticles. Surf. Sci. 636, 19–24 (2015)

    Google Scholar 

  • Yao, Y., Chen, S.H: Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials. J. Appl. Phys. 118(4), 044303 (2015)

    Google Scholar 

  • Yao, Y., Chen, S.H: Buckling behavior of nanowires predicted by a new surface energy density model. Acta Mech. 227(7), 1799–1811 (2016a)

    MathSciNet  MATH  Google Scholar 

  • Yao, Y., Chen, S.H.: Surface effect in the bending of nanowires. Mech. Mater. 100, 12–21 (2016b)

    Google Scholar 

  • Zhao, X.J., Rajapakse, R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer. Int. J. Eng. Sci. 47(11), 1433–1444 (2009)

    MATH  Google Scholar 

  • Zhang, C., Yao, Y., Chen, S.H.: Size-dependent surface energy density of typically fcc metallic nanomaterials. Comput. Mater. Sci. 82(3), 372–377 (2014)

    Google Scholar 

  • Zhang, X., Wang, Q.J., Wang, Y., Wang, Z., Shen, H., Liu, J.: Contact involving a functionally graded elastic thin film and considering surface effects. Int. J. Solids Struct. 150, 184–196 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L. Boussinesq problem with the surface effect based on surface energy density. Int J Mech Mater Des 16, 633–645 (2020). https://doi.org/10.1007/s10999-019-09476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09476-8

Keywords

Navigation