Skip to main content
Log in

Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel core/shell Fe3O4/C/polypyrrole (PPy) composites were prepared via facile hydrothermal and chemical oxidative polymerization method. The obtained Fe3O4/C/PPy exhibits a dual core–shell structure in which an intermediate carbon layer provides excellent electrical connectivity between Fe3O4 nanoparticles and PPy polymer. Further, these trilaminar core/shell composites were investigated for EMI shielding material to prevent EMI pollution. The excellent EMI shielding efficiency (> 28) dB was attained for Fe3O4/C:PPy (2:8 wt/wt) at thickness 0.8 mm which is mainly governed by absorption. Additional evidence of superior EMI absorption performance is the magnetic property of Fe3O4/C:PPy composites. It was observed that magnetic properties of Fe3O4/C:PPy composites highly depend on the content and thickness of the shell which influences the spin motion of Fe3O4 nanoparticles. Thus, it is anticipated that spin motion plays a decisive role in EMI shielding performance of Fe3O4/C/PPy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chauhan SS, Abraham M, Choudhary V (2016) Superior emi shielding performance of thermally stable carbon nanofiber/poly (ether-ketone) composites in 26.5–40 ghz frequency range. J Mater Sci 51(21):9705–9715. https://doi.org/10.1007/s10853-016-0204-1

    Article  CAS  Google Scholar 

  2. Lee B, Woo W, Park H, Hahm H, Wu J, Kim M (2002) Influence of aspect ratio and skin effect on emi shielding of coating materials fabricated with carbon nanofiber/pvdf. J Mater Sci 37(9):1839–1843. https://doi.org/10.1023/A:1014970528482

    Article  CAS  Google Scholar 

  3. Durmus Z, Durmus A, Bektay MY, Kavas H, Unver IS, Aktas B (2016) Quantifying structural and electromagnetic interference (emi) shielding properties of thermoplastic polyurethane–carbon nanofiber/magnetite nanocomposites. J Mater Sci 51(17):8005–8017. https://doi.org/10.1007/s10853-016-0069-3

    Article  CAS  Google Scholar 

  4. Zhang N, Huang Y, Zong M, Ding X, Li S, Wang M (2016) Coupling cofe2o4 and sns2 nanoparticles with reduced graphene oxide as a high-performance electromagnetic wave absorber. Ceram Int 42(14):15701–15708. https://doi.org/10.1016/j.ceramint.2016.07.028

    Article  CAS  Google Scholar 

  5. Ribadeneyra MC, de Diego JP, González MG (2014) Emi shielding composites based on magnetic nanoparticles and nanocarbons. Ph.D. thesis, Universidad Carlos III de Madrid. http://hdl.handle.net/10016/20623

  6. Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Hur SH, Choi WM, Kumar M, Dhawan S et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5(6):2411–2420. https://doi.org/10.1039/C3NR33962A

    Article  CAS  Google Scholar 

  7. Zhang H, Zhang G, Li J, Fan X, Jing Z, Li J, Shi X (2017) Lightweight, multifunctional microcellular pmma/Fe3O4@ mwcnts nanocomposite foams with efficient electromagnetic interference shielding. Compos A Appl Sci Manuf 100:128–138. https://doi.org/10.1016/j.compositesa.2017.05.009

    Article  CAS  Google Scholar 

  8. Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5(21):11383–11391. https://doi.org/10.1021/am4036527

    Article  CAS  Google Scholar 

  9. Rao BB, Chengappa M, Kale S (2017) Lightweight, flexible and thin Fe3O4-loaded, functionalized multi walled carbon nanotube buckypapers for enhanced x-band electromagnetic interference shielding. Mater Res Express 4(4):045012. https://doi.org/10.1088/2053-1591/aa69f4

    Article  CAS  Google Scholar 

  10. Yuan Y, Yin W, Yang M, Xu F, Zhao X, Li J, Peng Q, He X, Du S, Li Y (2018) Lightweight, flexible and strong core–shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130:59–68. https://doi.org/10.1016/j.carbon.2017.12.122

    Article  CAS  Google Scholar 

  11. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, Xu P (2014) Shell thickness-dependent microwave absorption of core–shell Fe3O4@ c composites. ACS Appl Mater Interfaces 6(15):12997–13006. https://doi.org/10.1021/am502910d

    Article  CAS  Google Scholar 

  12. Lv H, Ji G, Liu W, Zhang H, Du Y (2015) Achieving hierarchical hollow carbon@ fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3(39):10232–10241. https://doi.org/10.1039/C5TC02512E

    Article  CAS  Google Scholar 

  13. Prasad J, Singh AK, Shah J, Kotnala R, Singh K (2018) Synthesis of mos2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness. Mater Res Express 5(5):055028. https://doi.org/10.1088/2053-1591/aac0c2

    Article  CAS  Google Scholar 

  14. Cui C, Du Y, Li T, Zheng X, Wang X, Han X, Xu P (2012) Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J Phys Chem B 116(31):9523–9531. https://doi.org/10.1021/jp3024099

    Article  CAS  Google Scholar 

  15. Yang L, Cai H, Zhang B, Huo S, Chen X (2018) Enhanced microwave absorption property of epoxy nanocomposites based on pani@ Fe3O4@ cnfs nanoparticles with threephase heterostructure. Mater Res Express 5(2):025304. https://doi.org/10.1088/2053-1591/aaab8d

    Article  CAS  Google Scholar 

  16. Liu L, Zhang H, Li J, Shen Y, Wang C, Qiu L, Yuan Y, Xie A (2014) Porous Fe3O4/cui/pani nanosheets with excellent microwave absorption and hydrophobic property. Mater Res Bull 53:58–64. https://doi.org/10.1016/j.materresbull.2014.02.001

    Article  CAS  Google Scholar 

  17. Liu T, Liu N, Zhai S, Gao S, Xiao Z, An Q, Yang D (2019) Tailor-made core/shell/shell-like Fe3O4@ sio2@ ppy composites with prominent microwave absorption performance. J Alloys Compd 779:831–843. https://doi.org/10.1016/j.jallcom.2018.11.167

    Article  CAS  Google Scholar 

  18. Wang H, Yan Z, An J, He J, Hou Y, Yu H, Ma N, Yu G, Sun D (2016) Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption. RSC Adv 6(95):92152–92158. https://doi.org/10.1039/C6RA16003D

    Article  CAS  Google Scholar 

  19. Zhang C, Wang H, Liu F, Wang L, He H (2013) Magnetic core–shell Fe3O4@ c-so 3 h nanoparticle catalyst for hydrolysis of cellulose. Cellulose 20(1):127–134. https://doi.org/10.1007/s10570-012-9839-5

    Article  CAS  Google Scholar 

  20. Yao W, Shen C, Lu Y (2013) Fe3O4@ c@ polyaniline trilaminar core–shell composite microspheres as separable adsorbent for organic dye. Compos Sci Technol 87:8–13. https://doi.org/10.1016/j.compscitech.2013.07.023

    Article  CAS  Google Scholar 

  21. Liu X, Guo H, Xie Q, Luo Q, Wang LS, Peng DL (2015) Enhanced microwave absorption properties in ghz range of Fe3O4/c composite materials. J Alloys Compd 649:537–543. https://doi.org/10.1016/j.jallcom.2015.07.084

    Article  CAS  Google Scholar 

  22. Phan MH, Alonso J, Khurshid H, Lampen-Kelley P, Chandra S, Repa KS, Nemati Z, Das R, Iglesias Ó, Srikanth H (2016) Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials 6(11):221. https://doi.org/10.3390/nano6110221

    Article  CAS  Google Scholar 

  23. Shukla V (2019) Review on the electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv 1(1):1640. https://doi.org/10.1039/C9NA00108E

    Article  Google Scholar 

  24. Lv H, Ji G, Liang X, Zhang H, Du Y (2015) A novel rod-like mno 2@ fe loading on graphene giving excellent electromagnetic absorption properties. J Mater Chem C 3(19):5056–5064. https://doi.org/10.1039/C5TC00525F

    Article  CAS  Google Scholar 

  25. Zhang Y, Qiu M, Yu Y, Wen B, Cheng L (2016) A novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performance. ACS Appl Mater Interfaces 9(1):809–818. https://doi.org/10.1021/acsami.6b11989

    Article  CAS  Google Scholar 

  26. Liu X, Cui X, Chen Y, Zhang XJ, Yu R, Wang GS, Ma H (2015) Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly (vinylidene fluoride) composites. Carbon 95:870–878. https://doi.org/10.1016/j.carbon.2015.09.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V. Shukla acknowledges to Indian Institute of Technology Kharagpur and MHRD, India, for providing the financial assistantship to carry out the research work. The author would like to thank Dr. Sanjeev Kumar Srivastava (Department of Physics) and Prof. Suneel Kumar Srivastava (Department of Chemistry), Indian Institute of Technology, Kharagpur, India, for continuous support, sample preparation and EMI shielding measurements for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineeta Shukla.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 452 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, V. Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. J Mater Sci 55, 2826–2835 (2020). https://doi.org/10.1007/s10853-019-04198-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04198-w

Navigation