Skip to main content
Log in

The electronics transport mechanism of grain and grain boundary in semiconductive hafnium oxynitride thin film

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

HfOxNy thin film was deposited on oxidized silicon substrate; its physical structure and chemical composition were studied in detail by X-ray diffractometer, scanning electron microscopy, field emission transmission electron microscope and X-ray photoelectron spectrometer. Microtemperature sensors with high sensitivity based on the film were fabricated. To clarify the conduction process of grain, grain boundary (GB) and the whole film, temperature-dependent AC impedances of a sensor were measured and analyzed in 40–300 K. The results show that at all of the measured temperatures, the resistance of grain is much larger than that of GB, and its rising rates with the temperature reduction are also much larger than that of GB, indicating that the resistive property of HfOxNy thin film is determined by grain. In addition, it has been confirmed that the conduction process of both the HfOxNy film and GB is dominated by thermal activation and Mott variable-range hopping (VRH) in relatively high and low temperature range, respectively. The conduction process of the grain obeys Mott VRH in the whole considered temperature range, while the Mott characteristic temperature is changed. These results provide new insights into the performance enhancement of the transition metal oxynitride-based temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gu ZQ, Hu CQ, Fan XF, Xu L, Wen M, Meng QN, Zhao L, Zheng XL, Zheng WT (2014) On the nature of point defect and its effect on electronic structure of rocksalt hafnium nitride films. Acta Mater 81:315–325

    Article  CAS  Google Scholar 

  2. Huang HH, Fan XF, Hu CQ, Singh DJ, Jiang Q, Zheng WT (2015) Transformation of electronic properties and structural phase transition from HfN to Hf3N4. J Phys Condens Matter 27:225501

    Article  CAS  Google Scholar 

  3. Lin ZD, Zhan GH, You MM, Yang B, Chen X, Wang XL, Zhang WP, Liu JQ (2018) NTC thin film temperature sensors for cryogenics region with high sensitivity and thermal stability. Appl Phys Lett 113:133504

    Article  Google Scholar 

  4. Garbrecht M, Schroeder JL, Hultman L, Birch J, Saha B, Sands TD (2016) Microstructural evolution and thermal stability of HfN/ScN, ZrN/ScN, and Hf0.5Zr0.5N/ScN metal/semiconductor superlattices. J Mater Sci 51:8250–8258. https://doi.org/10.1007/s10853-016-0102-6

    Article  CAS  Google Scholar 

  5. Grosser M, Seidel H, Schmid U (2017) Microstructure and mechanical properties of sputter deposited tantalum nitride thin films after high temperature loading. Thin Solid Films 629:69–78

    Article  CAS  Google Scholar 

  6. Jia LW, Lu HP, Ran YJ, Zhao SJ, Liu HN, Li YL, Jiang ZT, Wang Z (2019) Structural and dielectric properties of ion beam deposited titanium oxynitride thin films. J Mater Sci 54:1452–1461. https://doi.org/10.1007/s10853-018-2923-y

    Article  CAS  Google Scholar 

  7. Lee YB, Oh IK, Cho EN, Moon P, Kim H, Yun I (2015) Characterization of HfOxNy thin film formation by in situ plasma enhanced atomic layer deposition using NH3 and N2 plasmas. Appl Surf Sci 349:757–762

    Article  CAS  Google Scholar 

  8. Pant G, Gnade A, Kim MJ, Wallace RM, Gnade BE, Quevedo-Lopez MA, Kirsch PD, Krishnan S (2006) Comparison of electrical and chemical characteristics of ultrathin HfON versus HfSiON dielectrics. Appl Phys Lett 89:032904

    Article  Google Scholar 

  9. Jiang R, Xie E, Chen Z, Zhang ZX (2006) Electrical property of HfOxNy–HfO2–HfOxNy sandwich-stack films. Appl Surf Sci 253:2421–2424

    Article  CAS  Google Scholar 

  10. Dalapati GK, Sridhara A, Wong ASW, Chia CK, Chi DZ (2009) HfOxNy gate dielectric on p-GaAs. Appl Phys Lett 94:073502

    Article  Google Scholar 

  11. Choi J, Puthenkovilakam R, Chang JP (2006) Effect of nitrogen on the electronic properties of hafnium oxynitrides. J Appl Phys 99:053705

    Article  Google Scholar 

  12. Suarez-Segovia C, Leroux C, Caubet P, Domengie F, Reimbold G, Romano G, Gourhant O, Joseph V, Ghibaudo G (2015) Effective work function modulation by sacrificial gate aluminum diffusion on HfON-based 14 nm NMOS devices. Microelectron Eng 147:113–116

    Article  CAS  Google Scholar 

  13. Gu ZQ, Huang HH, Zhang S, Wang XY, Gao J, Zhao L, Zheng WT, Hu CQ (2016) Optical reflectivity and hardness improvement of hafnium nitride films via tantalum alloying. Appl Phys Lett 109:232102

    Article  Google Scholar 

  14. Seo HS, Lee TY, Petrov I, Greene JE (2005) Epitaxial and polycrystalline HfNx (0.8 ≤ x ≤ 1.5) layers on MgO (001): film growth and physical properties. J Appl Phys 97:083521

    Article  Google Scholar 

  15. Liu M, Fang Q, He G, Zhu LQ, Pan SS, Zhang LD (2006) Chemical compositions and optical properties of HfOxNy thin films at different substrate temperatures. Mat Sci Semicond Process 9:876–879

    Article  CAS  Google Scholar 

  16. Farrell IL, Reeves RJ, Preston ARH, Ludbrook BM, Downes JE, Ruck BJ, Durbin SM (2010) Tunable electrical and optical properties of hafnium nitride thin films. Appl Phys Lett 96:071914

    Article  Google Scholar 

  17. Tang WM, Leung CH, Lai PT (2011) Enhanced sensing performance of MISiC schottky-diode hydrogen sensor by using HfON as gate insulator. IEEE Sens J 11:2940–2946

    Article  CAS  Google Scholar 

  18. Mott NF (1990) Metal-insulator transitions, 2nd edn. Taylor & Francis Ltd, London

    Book  Google Scholar 

  19. Bhatti IN, Rawat R, Banerjee A, Pramanik AK (2014) Temperature evolution of magnetic and transport behavior in 5d Mott insulator Sr2IrO4: significance of magneto-structural coupling. J Phys Condens Matter 27:016005

    Article  Google Scholar 

  20. Parisini A, Gorni M, Nath A, Belsito L, Rao Mulpuri V, Nipoti R (2015) Remarks on the room temperature impurity band conduction in heavily Al+ implanted 4H-SiC. J Appl Phys 118:035101

    Article  Google Scholar 

  21. Li ZG, Peng LP, Zhang JC, Li J, Zeng Y, Luo YC, Zhan ZQ, Meng LB, Zhou MJ, Wu WD (2017) Transition between Efros–Shklovskii and Mott variable-range hopping conduction in polycrystalline germanium thin films. Semicond Sci Technol 32:035010

    Article  Google Scholar 

  22. Zanatta AR, Chambouleyron I (1992) Transport properties of nitrogen-doped hydrogenated amorphous germanium films. Phys Rev B 46:2119–2125

    Article  CAS  Google Scholar 

  23. Lu CL, Quindeau A, Deniz H, Preziosi D, Hesse D, Alexe M (2014) Crossover of conduction mechanism in Sr2IrO4 epitaxial thin films. Appl Phys Lett 105:082407

    Article  Google Scholar 

  24. Leonarska A, Kadziołka-Gaweł M, Szeremeta AZ, Bujakiewicz-Koronska R, Kalvane A, Molak A (2017) Electric relaxation and Mn3+/Mn4+ charge transfer in Fe-doped Bi12MnO20–BiMn2O5 structural self-composite. J Mater Sci 52:2222–2231. https://doi.org/10.1007/s10853-016-0515-2

    Article  CAS  Google Scholar 

  25. Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138

    Article  CAS  Google Scholar 

  26. Schmidt R, Brinkman AW (2007) Studies of the temperature and frequency dependent impedance of an electroceramic functional oxide NTC thermistor. Adv Funct Mater 17:3170–3174

    Article  CAS  Google Scholar 

  27. Kumar VP, Dayal V, Hadimani RL, Bhowmik RN, Jiles DC (2015) Magnetic and electrical properties of Ti-substituted lanthanum bismuth manganites. J Mater Sci 50:3562–3575. https://doi.org/10.1007/s10853-015-8916-1

    Article  CAS  Google Scholar 

  28. Ricote S, Bonanos N, Manerbino A, Sullivan NP, Coors WG (2014) Effects of the fabrication process on the grain boundary resistance in BaZr0.9Y0.1O3-δ. J Mater Chem A 2:6107

    Article  Google Scholar 

  29. He L, Lin ZY (2011) Studies of temperature dependent ac impedance of a negative temperature coefficient Mn–Co–Ni–O thin film thermistor. Appl Phys Lett 98:242112

    Article  Google Scholar 

  30. Liu JS, Lu HL, Xu SS, Wang PF, Ding SJ, Zhang DW (2016) Influence of NH3 annealing on the chemical states of HfO2/Al2O3 stacks studied by X-ray photoelectron spectroscopy. Vacuum 124:60–64

    Article  CAS  Google Scholar 

  31. Zhou QG, Zhai JW (2013) Resistive switching characteristics of Pt/TaOx/HfNx structure and its performance improvement. AIP Adv 3:032102

    Article  Google Scholar 

  32. Wang XJ, Liu M, Zhang LD (2012) Temperature dependence of chemical states and band alignments in ultrathin HfOxNy/Si gate stacks. J Phys D Appl Phys 45:335103

    Article  Google Scholar 

  33. Yun SN, Zhou HW, Wang L, Zhang H, Ma TL (2013) Economical hafnium oxygen nitride binary/ternary nanocomposite counter electrode catalysts for high-efficiency dye-sensitized solar cells. J Mater Chem A 1:1341

    Article  CAS  Google Scholar 

  34. Brandt BL, Rubin LG (1982) Low-temperature thermometry in high magnetic fields. V. Carbon-glass resistors. Rev Sci Instrum 53(8):1129–1136

    Article  Google Scholar 

  35. Yotsuya T, Kakehi Y, Ishida T (2011) Thin film temperature sensor for cryogenic region with small magnetoresistance. Cryogenics 51:546–549

    Article  CAS  Google Scholar 

  36. Yotsuya T, Yoshitake M, Kodamat T (1997) Low-temperature thermometer using sputtered ZrNx thin film. Cryogenics 37:817–822

    Article  CAS  Google Scholar 

  37. Monea BF, Ionete EI, Spiridon SI, Leca A, Stanciu A, Petre E, Vaseashta A (2017) Single wall carbon nanotubes based cryogenic temperature sensor platforms. Sensors 17:2071

    Article  Google Scholar 

  38. Courts SS, Swinehart PR (2003) Review of Cernox™ (Zirconium Oxy-Nitride) thin film resistance temperature sensors. AIP Conf Proc 684:393

    Article  CAS  Google Scholar 

  39. Bivas S, Jagaran A, Timothy DS, Umesh VW (2010) Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: a first-principles study. J Appl Phys 107:033715

    Article  Google Scholar 

  40. Eric KKA, Michael KED, Samuel NAD, Osei A, Francis KA, Bright KA, Robert KN (2017) Indirect phase transition of refractory nitrides compounds of: TiN, ZrN and HfN crystal structures. Comput Mater Sci 137:75–84

    Article  Google Scholar 

  41. Bazhanov DI, Knizhnik AA, Safonov AA, Bagatur’yants AA (2005) Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides. J Appl Phys 97:044108

    Article  Google Scholar 

  42. Liu ZTY, Burton BP, Khare SV, Gall D (2017) First-principles phase diagram calculations for the rocksalt-structure quasibinary systems TiN–ZrN, TiN–HfN and ZrN–HfN. J Phys Condens Matter 29:035401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Key R&D Program of China under grant 2017YFB1002501, the National Natural Science Foundation of China (No. 61728402), the Research Program of Shanghai Science and Technology Committee (17JC1402800), the Program of Shanghai Academic/Technology Research Leader (18XD1401900). The authors are also grateful to the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Li, X., Zeng, Y. et al. The electronics transport mechanism of grain and grain boundary in semiconductive hafnium oxynitride thin film. J Mater Sci 55, 2881–2890 (2020). https://doi.org/10.1007/s10853-019-03952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03952-4

Navigation