Skip to main content
Log in

Interfacial fracture toughness of sintered hybrid silver interconnects

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interfacial fracture toughness of sintered hybrid silver nanoparticles (AgNPs) on both Au and Cu substrates is studied as a function of sintering temperature. Interfacial microstructure and porosity evolution of Au/AgNPs and Cu/AgNPs are observed to impact the fracture toughness. An Au–Ag interfacial diffusion layer is resolved at the interface of Au/AgNPs interconnects, while an oxide layer is found at the interface of Cu/AgNPs interconnects. Both porosity and pore sizes of the sintered silver interconnects are analyzed across the micro- and macro-length scales and related to the interfacial fracture toughness. The experimental observations can be theoretically described, which permits to predict the fracture toughness of the sintered silver interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Bai G (2005) Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection. ProQuest LLC, Ann Arbor

    Google Scholar 

  2. Li Y, Moon K-S, Wong CP (2006) Enhancement of electrical properties of anisotropically conductive adhesive joints via low temperature sintering. J Appl Polym Sci 99(4):1665–1673

    Article  CAS  Google Scholar 

  3. Wang T, Chen X, Lu G-Q, Lei G-Y (2007) Low-temperature sintering with nano-silver paste in die-attached interconnection. J Electron Mater 36(10):1333–1340

    Article  CAS  Google Scholar 

  4. Li X, Chen X, Yu D-J, Lu G-Q (2010) Study on adhesive reliability of low-temperature sintered high power LED modules. In: Proceedings—2010 11th international conference on electronic packaging technology and high density packaging, ICEPT-HDP 2010. Association for Computing Machinery, pp 1371–-1376

  5. Chen G, Cao Y, Mei Y, Han D, Lu G-Q, Chen X (2012) Pressure-assisted low-temperature sintering of nanosilver paste for 55-mm2 chip attachment. IEEE Trans Compon Packag Manuf Technol 2(11):1759–1767

    Article  CAS  Google Scholar 

  6. Siow KS (2012) Mechanical properties of nano-silver joints as die attach materials. J Alloys Compd 514:6–19

    Article  CAS  Google Scholar 

  7. Yan Y, Guan Y, Chen X, Lu G-Q (2013) Effects of voids in sintered silver joint on thermal and optoelectronic performances of high power laser diode. J Electron Packag Trans ASME 135(4):041003

    Article  Google Scholar 

  8. Yu H, Li LL, Zhang YJ (2012) Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr Mater 66(11):931–934

    Article  CAS  Google Scholar 

  9. Jin HH, Kanagavel S, Chin WF (2014) Novel conductive paste using hybrid silver sintering technology for high reliability power semiconductor packaging. In: 64th Electronic components and technology conference, ECTC 2014, May 27, 2014–May 30, 2014, Institute of Electrical and Electronics Engineers Inc., Orlando, FL, United states, pp 1790–1795

  10. Suganuma K, Sakamoto S, Kagami N, Wakuda D, Kim KS, Nogi M (2012) Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron Reliab 52(2):375–380

    Article  CAS  Google Scholar 

  11. Wang T, Zhao M, Chen X, Lu G-Q, Ngo K, Luo S (2012) Shrinkage and sintering behavior of a low-temperature sinterable nanosilver die-attach paste. J Electron Mater 41(9):2543–2552

    Article  CAS  Google Scholar 

  12. Akisanya AR (2017) Fracture initiation in bi-material joints subject to combined tension and shear loading. J Adhes Sci Technol 31(19–20):2092–2104

    Article  CAS  Google Scholar 

  13. Muralidharan G, Leonard DN, Meyer HM (2017) Effect of gold on the microstructural evolution and integrity of a sintered silver joint. J Electron Mater 46(7):4085–4092

    Article  CAS  Google Scholar 

  14. Khazaka R, Mendizabal L, Henry D (2014) Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J Electron Mater 43(7):2459–2466

    Article  CAS  Google Scholar 

  15. Yang CA, Yang S, Liu X, Nishikawa H, Kao CR (2018) Enhancement of nano-silver chip attachment by using transient liquid phase reaction with indium. J Alloys Compd 762:586–597

    Article  CAS  Google Scholar 

  16. Astm E (2009) Standard test method for plane-strain fracture toughness of metallic materials. Astm, West Conshohocken

    Google Scholar 

  17. Hayes SM, Chawla N, Frear DR (2009) Interfacial fracture toughness of Pb-free solders. Microelectron Reliab 49(3):269–287

    Article  CAS  Google Scholar 

  18. Siow KS, Manoharan M (2005) Mixed mode fracture toughness of lead–tin and tin–silver solder joints with nickel-plated substrate. Mat Sci Eng A Struct 404(1):244–250

    Article  Google Scholar 

  19. Casali DR, Kruzic JJ (2017) Surface finish effects on fracture behavior of Sn–4Ag–0.5Cu solder joints. Minerals, metals and materials series. Springer, Switzerland, pp 243–251

    Chapter  Google Scholar 

  20. Zhang H, Chen C, Jiu J, Nagao S, Suganuma K (2018) High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device. J Mater Sci Mater Electron 29(10):8854–8862

    Article  CAS  Google Scholar 

  21. Chen S, Fan G, Yan X, Labarbera C, Kresge L, Lee N-C (2015) Achieving high reliability via pressureless sintering of nano-Ag paste for die-attach. In: 16th International conference on electronic packaging technology, ICEPT 2015, August 11, 2015—August 14, 2015. Institute of Electrical and Electronics Engineers Inc., Changsha, China, pp 367–374

  22. Qi K, Chen X, Lu G-Q (2008) Effect of interconnection area on shear strength of sintered joint with nano-silver paste. Solder Surf Mt Technol 20(1):8–12

    Article  CAS  Google Scholar 

  23. Kim JH, Kim KS, Jang KR, Jung SB, Kim TS (2015) Enhancing adhesion of screen-printed silver nanopaste films. Adv Mater Interfaces 2(13):1500283

    Article  Google Scholar 

  24. Xu Q, Mei Y, Li X, Lu G-Q (2016) Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J Alloys Compd 675:317–324

    Article  CAS  Google Scholar 

  25. Joo S, Baldwin DF (2010) Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology 21(5):055204

    Article  Google Scholar 

  26. Noah MA, Flototto D, Wang ZM, Reiner M, Hugenschmidt C, Mittemeijer EJ (2016) Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation. Acta Mater 107:133–143

    Article  CAS  Google Scholar 

  27. Wang CP, Yan LN, Han JJ, Liu XJ (2012) Diffusion mobilities in the fcc Ag–Cu and Ag–Pd alloys. Calphad Comput Coupling Phase Diagr Thermochem 37:57–64

    Article  Google Scholar 

  28. Fu S, Mei Y, Lu G-Q, Li X, Chen G, Chen X (2014) Pressureless sintering of nanosilver paste at low temperature to join large area (100 mm2) power chips for electronic packaging. Mater Lett 128:42–45

    Article  CAS  Google Scholar 

  29. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press

  30. Huang JS, Gibson LJ (1991) Fracture toughness of brittle foams. Acta Metall Mater 39(7):1627–1636

    Article  CAS  Google Scholar 

  31. Kumar R, Bhattacharjee B (2003) Porosity, pore size distribution and in situ strength of concrete. Cem Concr Res 33(1):155–164

    Article  CAS  Google Scholar 

  32. Ahmed HST, Jankowski AF (2009) The mechanical strength of submicron porous silver foils. Surf Coat Technol 204(6):1026–1029

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 11572249, 11772257) and the Alexander von Humboldt Foundation (Fellowship for Experienced Researchers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Kirchlechner, C., Keer, L. et al. Interfacial fracture toughness of sintered hybrid silver interconnects. J Mater Sci 55, 2891–2904 (2020). https://doi.org/10.1007/s10853-019-04212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04212-1

Navigation