Skip to main content

Advertisement

Log in

Is brain iron trafficking part of the physiology of the amyloid precursor protein?

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The amyloid precursor protein is so named, because a proteolytic fragment of it was found associated with a neuropathic disorder now known as Alzheimer’s disease. This fragment, Aβ, along with tau makes up the plaques and tangles that are the hallmark of AD. Iron (and other first-row transition metals) is found associated with these proteinaceous deposits. Much research has focused on the relationship of the plaques and iron to the etiology of the disease. This commentary asks another question, one only more recently addressed namely, what is the physiologic function of the amyloid precursor protein (APP) and of its secretase-generated soluble species? Overall, the data make clear that APP and its products have neurotrophic functions and some data indicate one of these may be to modulate the trafficking of iron in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Dahm R (2006) Curr Biol 16:R906–910

    Article  CAS  PubMed  Google Scholar 

  2. Alzheimer A (1906) Zeit Psych Psych Med 64:146–148

    Google Scholar 

  3. Kosik KS, Joachim CL, Selkoe DJ (1986) Proc Natl Acad Sci USA 83:4044–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  5. Cousins SL, Dai W, Stephenson FA (2015) J Neurochem 133:879–885

    Article  CAS  PubMed  Google Scholar 

  6. Klevanski M, Saar M, Baumkotter F, Weyer SW, Kins S, Muller UC (2014) Mol Cell Neurosci 61:201–210

    Article  CAS  PubMed  Google Scholar 

  7. Ludewig S, Korte M (2016) Front Mol Neurosci 9:161

    PubMed  Google Scholar 

  8. Muller UC, Deller T, Korte M (2017) Nat Rev Neurosci 18:281–298

    Article  PubMed  CAS  Google Scholar 

  9. Weyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M, Vogt MA, Gass P, Samanta A, Jaschke A, Korte M, Wolfer DP, Caldwell JH, Muller UC (2011) EMBO J 30:2266–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schilling S, Mehr A, Ludewig S, Stephan J, Zimmermann M, August A, Strecker P, Korte M, Koo EH, Muller UC, Kins S, Eggert S (2017) J Neurosci 37:5345–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R (2016) Aging Dis 7:163–179

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT (2010) J Biol Chem 285:31217–31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guerreiro C, Silva B, Crespo AC, Marques L, Costa S, Timoteo A, Marcelino E, Maruta C, Vilares A, Matos M, Couto FS, Faustino P, Verdelho A, Guerreiro M, Herrero A, Costa C, de Mendonca A, Martins M, Costa L (2015) Biochim Biophys Acta 1852:2116–2122

    Article  CAS  PubMed  Google Scholar 

  14. Guo LY, Alekseev O, Li Y, Song Y, Dunaief JL (2014) Exp Eye Res 129:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCarthy RC, Kosman DJ (2015) Front Mol Neurosci 8:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. McCarthy RC, Kosman DJ (2015) Cell Mol Life Sci 72:709–727

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy RC, Park YH, Kosman DJ (2014) EMBO Rep 15:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR (2002) J Biol Chem 277:45518–45528

    Article  CAS  PubMed  Google Scholar 

  19. Yanatori I, Richardson DR, Imada K, Kishi F (2016) J Biol Chem 291:17303–17318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) NeuroMol Med 12:1–12

    Article  CAS  Google Scholar 

  21. O’Brien RJ, Wong PC (2011) Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jacobsen KT, Iverfeldt K (2009) Cell Mol Life Sci 66:2299–2318

    Article  CAS  PubMed  Google Scholar 

  23. Hoe HS, Fu Z, Makarova A, Lee JY, Lu C, Feng L, Pajoohesh-Ganji A, Matsuoka Y, Hyman BT, Ehlers MD, Vicini S, Pak DT, Rebeck GW (2009) J Biol Chem 284:8495–8506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) J Neurosci 29:10788–10801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montagna E, Dorostkar MM, Herms J (2017) Front Mol Neurosci 10:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mu Y, Gage FH (2011) Mol Neurodegener 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C, Korte M, Deller T, Muller UC (2014) Acta Neuropathol Commun 2:36

    Article  PubMed  PubMed Central  Google Scholar 

  28. Copanaki E, Chang S, Vlachos A, Tschäpe J-A, Müller UC, Kögel D, Deller T (2010) Mol Cell Neurosci 44:386–393

    Article  CAS  PubMed  Google Scholar 

  29. Kogel D, Schomburg R, Copanaki E, Prehn JH (2005) Cell Death Differ 12:1–9

    Article  CAS  PubMed  Google Scholar 

  30. Cheng G, Yu Z, Zhou D, Mattson MP (2002) Exp Neurol 175:407–414

    Article  CAS  PubMed  Google Scholar 

  31. Greenberg SM, Kosik KS (1995) Neurobiol Aging 16:403–407

    Article  CAS  PubMed  Google Scholar 

  32. Guo Q, Robinson N, Mattson MP (1998) J Biol Chem 273:12341–12351

    Article  CAS  PubMed  Google Scholar 

  33. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) PLoS ONE 6:e16301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Neurobiol Dis 31:250–260

    Article  CAS  PubMed  Google Scholar 

  35. Mockett BG, Guevremont D, Elder MK, Parfitt KD, Peppercorn K, Morrissey J, Singh A, Hintz TJ, Kochen L, Tom Dieck S, Schuman E, Tate WP, Williams JM, Abraham WC (2019) J Neurosci 39:3188–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M, Mattson MP (1996) J Neurochem 67:1882–1896

    Article  CAS  PubMed  Google Scholar 

  37. Tackenberg C, Nitsch RM (2019) Mol Brain 12:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C (2012) J Neurochem 122:208–220

    Article  CAS  PubMed  Google Scholar 

  39. Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C, Eckman CB, Korte M, Wolfer DP, Müller UC (2007) J Neurosci 27:7817–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hick M, Herrmann U, Weyer SW, Mallm JP, Tschape JA, Borgers M, Mercken M, Roth FC, Draguhn A, Slomianka L, Wolfer DP, Korte M, Muller UC (2015) Acta Neuropathol 129:21–37

    Article  CAS  PubMed  Google Scholar 

  41. Moreno L, Rose C, Mohanraj A, Allinquant B, Billard JM, Dutar P (2015) J Alzheimers Dis 48:927–935

    Article  CAS  PubMed  Google Scholar 

  42. Kaden D, Voigt P, Munter LM, Bobowski KD, Schaefer M, Multhaup G (2009) J Cell Sci 122:368–377

    Article  CAS  PubMed  Google Scholar 

  43. Mayer MC, Schauenburg L, Thompson-Steckel G, Dunsing V, Kaden D, Voigt P, Schaefer M, Chiantia S, Kennedy TE, Multhaup G (2016) J Neurochem 137:266–276

    Article  CAS  PubMed  Google Scholar 

  44. Wild K, August A, Pietrzik CU, Kins S (2017) Front Mol Neurosci 10:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC (2017) J Biol Chem 292:3751–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bousejra-ElGarah F, Bijani C, Coppel Y, Faller P, Hureau C (2011) Inorg Chem 50:9024–9030

    Article  CAS  PubMed  Google Scholar 

  47. Atrian-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C (2018) Coord Chem Rev 371:38–55

    Article  CAS  Google Scholar 

  48. Rouault TA (2006) Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  49. Kuhn LC (2015) Metallomics 7:232–243

    Article  CAS  PubMed  Google Scholar 

  50. Lill R, Muhlenhoff U (2008) Annu Rev Biochem 77:669–700

    Article  CAS  PubMed  Google Scholar 

  51. Braymer JJ, Lill R (2017) J Biol Chem 292:12754–12763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ciofi-Baffoni S, Nasta V, Banci L (2018) Metallomics 10:49–72

    Article  CAS  PubMed  Google Scholar 

  53. Pandey AK, Pain J, Dancis A, Pain D (2019) J Biol Chem 294:9489–9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Condo I, Malisan F, Guccini I, Serio D, Rufini A, Testi R (2010) Hum Mol Genet 19:1221–1229

    Article  CAS  PubMed  Google Scholar 

  55. Rogers JT, Randall JD, Eder PS, Huang X, Bush AI, Tanzi RE, Venti A, Payton SM, Giordano T, Nagano S, Cahill CM, Moir R, Lahiri DK, Greig N, Sarang SS, Gullans SR (2002) J Mol Neurosci 19:77–82

    Article  CAS  PubMed  Google Scholar 

  56. Zhou ZD, Tan EK (2017) Mol Neurodegener 12:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Peters DG, Connor JR, Meadowcroft MD (2015) Neurobiol Dis 81:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uranga RM, Salvador GA (2018) Oxid Med Cell Longev 2018:2850341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Long JM, Maloney B, Rogers JT, Lahiri DK (2019) Mol Psychiatry 24:345–363

    Article  CAS  PubMed  Google Scholar 

  60. Drakesmith H, Nemeth E, Ganz T (2015) Cell Metab 22:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aschemeyer S, Qiao B, Stefanova D, Valore EV, Sek AC, Ruwe TA, Vieth KR, Jung G, Casu C, Rivella S, Jormakka M, Mackenzie B, Ganz T, Nemeth E (2018) Blood 131:899–910

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bonaccorsi di Patti MC, Cutone A, Polticelli F, Rosa L, Lepanto MS, Valenti P, Musci G (2018) Biometals 31:399–414

    Article  CAS  PubMed  Google Scholar 

  63. Ji C, Steimle BL, Bailey DK, Kosman DJ (2018) Cell Mol Neurobiol 38:941–954

    Article  CAS  PubMed  Google Scholar 

  64. Kono S, Yoshida K, Tomosugi N, Terada T, Hamaya Y, Kanaoka S, Miyajima H (2010) Biochim Biophys Acta 1802:968–975

    Article  CAS  PubMed  Google Scholar 

  65. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI (2010) Cell 142:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McCarthy RC, Kosman DJ (2013) J Biol Chem 288:17932–17940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dlouhy AC, Bailey DK, Steimle BL, Parker HV, Kosman DJ (2019) J Biol Chem 294:4202–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA (2014) PLoS ONE 9:e114174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Xiong K, Cai H, Luo X-G, Struble RG, Clough RW, Yan X-X (2007) Exp Brain Res 181:435–446

    Article  CAS  PubMed  Google Scholar 

  70. Kim CH, Yoo YM (2013) Korean J Physiol Pharmacol 17:189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Steven Bodovitz MTF, Frail DE, Klein WL (1995) J Neurochem 64:307–315

    Article  Google Scholar 

  72. Honarmand Ebrahimi K, Dienemann C, Hoefgen S, Than ME, Hagedoorn PL, Hagen WR (2013) PLoS ONE 8:e72177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Young TR, Pukala TL, Cappai R, Wedd AG, Xiao Z (2018) Biochemistry 57:4165–4176

    Article  CAS  PubMed  Google Scholar 

  74. Kosman DJ (2013) Coordin Chem Rev 257:210–217

    Article  CAS  Google Scholar 

  75. Atrian-Blasco E, Conte-Daban A, Hureau C (2017) Dalton T 46:12750–12759

    Article  CAS  Google Scholar 

  76. Buettner GR (1986) Free Radic Res Commun 1:349–353

    Article  CAS  PubMed  Google Scholar 

  77. Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP (2013) Curr Neuropharmacol 11:59–79

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kruer MC (2013) Int Rev Neurobiol 110:165–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider SA (2016) Curr Neurol Neurosci Rep 16:9

    Article  PubMed  CAS  Google Scholar 

  80. Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Front Neurosci 13:180

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in the Kosman lab is supported by a grant from the National Institute of Neurological Disorders and Stroke, NS102337. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Kosman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, D.K., Kosman, D.J. Is brain iron trafficking part of the physiology of the amyloid precursor protein?. J Biol Inorg Chem 24, 1171–1177 (2019). https://doi.org/10.1007/s00775-019-01684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01684-z

Keywords

Navigation