Skip to main content

Advertisement

Log in

Effects of Cu(II) on the aggregation of amyloid-β

  • Mini Review
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Aberrant aggregation of the Aβ protein is a hallmark of Alzheimer’s disease (AD), but no complete characterization of the molecular level pathogenesis has been achieved. A promising hypothesis is that dysfunction of metal ion homeostasis, and consequently, the undesired interaction of metal ions with Aβ, may be central to the development of AD. Qualitatively, most data indicate that Cu(II) induces rapid self-assembly of both Aβ40 and Aβ42 during the initial phase of the aggregation, while at longer time scales fibrillation may occur, depending on the experimental conditions. For Aβ40 and Cu(II):Aβ ≤ 1, most data imply that low concentration of Aβ40 favors nucleation and rapid fibril elongation, while high concentration of Aβ40 favors formation of amorphous aggregates. However, there are conflicting reports on this issue. For Aβ42 and Cu(II):Aβ ≤ 1, there is consensus that the lag time is extended upon addition of Cu(II). For Cu(II):Aβ > 1, the lag time is increased upon interaction with Cu(II), and in most cases fibrillation is not observed, presumably because Cu(II) occupies a second more solvent-exposed binding site, which is more prone to form metal ion-bridged species and cause rapid formation of non-fibrillar aggregates. The interesting N-terminally truncated Aβ11–40 with high affinity for Cu(II), exhibits delay of fibrillation upon addition of 0.4 eq. Cu(II). In our view, there are still problems achieving reproducible results in this field, and we provide a shortlist of some of the pitfalls. Finally, we propose a consensus model for the effects of Cu(II) on the aggregation kinetics of Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted with permission from [42]. Copyright (2013) American Chemical Society

Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

APP:

Amyloid-precursor protein

ThT:

Thioflavin T

ROS:

Reactive oxygen species

AFM:

Atomic force microscopy

TEM:

Transmission electron microscopy

CD:

Circular dichroism

NMR:

Nuclear magnetic resonance

HDX:

Hydrogen–deuterium exchange

SPR:

Surface plasmon resonance

MS:

Mass spectrometry

SEC:

Size-exclusion chromatography

HPLC:

High-performance liquid chromatography

SEM:

Scanning electron microscopy

ICP-MS:

Inductively coupled plasma mass spectrometry

PICUP:

Photo-induced cross-linking of unmodified proteins

ESEEM:

Electron spin echo envelope modulation spectroscopy

References

  1. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    Article  CAS  PubMed  Google Scholar 

  2. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68

    Article  CAS  PubMed  Google Scholar 

  3. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  4. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  5. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101

    Article  CAS  PubMed  Google Scholar 

  7. Chen W-T, Liao Y-H, Yu H-M, Cheng IH, Chen Y-R (2011) Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-β stability, oligomerization, and aggregation: amyloid-β destabilization promotes annular protofibril formation. J Biol Chem 286:9646–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  9. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  10. Rauk A (2009) The chemistry of Alzheimer’s disease. Chem Soc Rev 38:2698–2715

    Article  CAS  PubMed  Google Scholar 

  11. Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Aβ. Mol Neurodegener 4:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ono K, Condron MM, Teplow DB (2009) Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci USA 106:14745–14750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  14. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Guerreiro RJ, Gustafson DR, Hardy J (2012) The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol Aging 33:437–456

    Article  CAS  PubMed  Google Scholar 

  16. Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112:5193–5239

    Article  CAS  PubMed  Google Scholar 

  17. Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  18. Hubin E, van Nuland NA, Broersen K, Pauwels K (2014) Transient dynamics of Aβ contribute to toxicity in Alzheimer’s disease. Cell Mol Life Sci 71:3507–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faller P, Hureau C, La Penna G (2014) Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Acc Chem Res 47:2252–2259

    Article  CAS  PubMed  Google Scholar 

  20. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384

    Article  CAS  PubMed  Google Scholar 

  21. Ayton S, Lei P, Bush AI (2015) Biometals and their therapeutic implications in Alzheimer’s disease. Neurotherapeutics 12:109–120

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh C, Seal M, Mukherjee S, Ghosh Dey S (2015) Alzheimer’s disease: a heme-Aβ perspective. Acc Chem Res 48:2556–2564

    Article  CAS  PubMed  Google Scholar 

  23. Hane FT, Hayes R, Lee BY, Leonenko Z (2016) Effect of copper and zinc on the single molecule self-affinity of Alzheimer’s amyloid-β peptides. PLoS One 11:e0147488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Borghesani V, Alies B, Hureau C (2018) Cu(II) binding to various forms of amyloid-β peptides. Are they friends or foes? Eur J Inorg Chem 2018:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rana M, Sharma AK (2019) Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 11:64–84

    Article  CAS  PubMed  Google Scholar 

  26. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    Article  CAS  PubMed  Google Scholar 

  27. Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112:5147–5192

    Article  CAS  PubMed  Google Scholar 

  28. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nerelius C, Sandegren A, Sargsyan H, Raunak R, Leijonmarck H, Chatterjee U, Fisahn A, Imarisio S, Lomas DA, Crowther DC, Strömberg R, Johansson J (2009) α-Helix targeting reduces amyloid-β peptide toxicity. Proc Natl Acad Sci USA 106:9191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Serpell LC, Blake CCF, Fraser PE (2000) Molecular structure of a fibrillar Alzheimer’s Aβ fragment. Biochemistry 39:13269–13275

    Article  CAS  PubMed  Google Scholar 

  31. Serpell LC, Fraser PE, Sunde M (1999) Methods enzymol. Academic Press, Cambridge, pp 526–536

    Google Scholar 

  32. Ferrone F (1999) Methods enzymol. Academic Press, Cambridge, pp 256–274

    Google Scholar 

  33. Harper JD, Peter J, Lansbury T (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    Article  CAS  PubMed  Google Scholar 

  34. Sarell CJ, Wilkinson SR, Viles JH (2010) Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-β from Alzheimer disease. J Biol Chem 285:41533–41540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    Article  CAS  PubMed  Google Scholar 

  36. Alies B, Badei B, Faller P, Hureau C (2012) Reevaluation of copper(I) affinity for amyloid-β peptides by competition with ferrozine—an unusual copper(I) indicator. Chem Eur J 18:1161–1167

    Article  CAS  PubMed  Google Scholar 

  37. Bin Y, Chen S, Xiang J (2013) pH-dependent kinetics of copper ions binding to amyloid-β peptide. J Inorg Biochem 119:21–27

    Article  CAS  PubMed  Google Scholar 

  38. Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Copper(II) binding to amyloid-β fibrils of Alzheimer’s disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Aβ oligomeric form. Biochemistry 48:4388–4402

    Article  CAS  PubMed  Google Scholar 

  39. Rózga M, Kłoniecki M, Dadlez M, Bal W (2010) A direct determination of the dissociation constant for the Cu(II) complex of amyloid β 1–40 peptide. Chem Res Toxicol 23:336–340

    Article  PubMed  CAS  Google Scholar 

  40. Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord Chem Rev 256:2271–2284

    Article  CAS  Google Scholar 

  41. Atrián-Blasco E, Conte-Daban A, Hureau C (2017) Mutual interference of Cu and Zn ions in Alzheimer’s disease: perspectives at the molecular level. Dalton Trans 46:12750–12759

    Article  PubMed  PubMed Central  Google Scholar 

  42. Faller P, Hureau C, Berthoumieu O (2013) Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg Chem 52:12193–12206

    Article  CAS  PubMed  Google Scholar 

  43. Pedersen JT, Borg CB, Michaels TC, Knowles TP, Faller P, Teilum K, Hemmingsen L (2015) Aggregation-prone amyloid-β Cu(II) species formed on the millisecond timescale under mildly acidic conditions. ChemBioChem 16:1293–1297

    Article  CAS  PubMed  Google Scholar 

  44. Branch T, Girvan P, Barahona M, Ying L (2015) Introduction of a fluorescent probe to amyloid-β to reveal kinetic insights into its interactions with copper(II). Angew Chem Int Ed Engl 54:1227–1230

    Article  CAS  PubMed  Google Scholar 

  45. Alies B, Renaglia E, Rózga M, Bal W, Faller P, Hureau C (2013) Cu(II) affinity for the Alzheimer’s peptide: tyrosine fluorescence studies revisited. Anal Chem 85:1501–1508

    Article  CAS  PubMed  Google Scholar 

  46. Branch T, Barahona M, Dodson CA, Ying L (2017) Kinetic analysis reveals the identity of Aβ-metal complex responsible for the initial aggregation of Aβ in the synapse. ACS Chem Neurosci 8:1970–1979

    Article  CAS  PubMed  Google Scholar 

  47. Pedersen JT, Teilum K, Heegaard NHH, Østergaard J, Adolph H-W, Hemmingsen L (2011) Rapid formation of a preoligomeric peptide–metal–peptide complex following copper(II) binding to amyloid β peptides. Angew Chem Int Ed Engl 50:2532–2535

    Article  CAS  PubMed  Google Scholar 

  48. Lv Z, Condron MM, Teplow DB, Lyubchenko YL (2013) Nanoprobing of the effect of Cu2+ cations on misfolding, interaction and aggregation of amyloid β peptide. J Neuroimmune Pharmacol 8:262–273

    Article  PubMed  Google Scholar 

  49. Pedersen JT, Østergaard J, Rozlosnik N, Gammelgaard B, Heegaard NHH (2011) Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides. J Biol Chem 286:26952–26963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lim KH, Kim YK, Chang Y-T (2007) Investigations of the molecular mechanism of metal-induced Aβ (1–40) amyloidogenesis. Biochemistry 46:13523–13532

    Article  CAS  PubMed  Google Scholar 

  51. Talmard C, Guilloreau L, Coppel Y, Mazarguil H, Faller P (2007) Amyloid-β peptide forms monomeric complexes with CuII and ZnII prior to aggregation. ChemBioChem 8:163–165

    Article  CAS  PubMed  Google Scholar 

  52. Goch W, Bal W (2017) Numerical simulations reveal randomness of Cu(II) induced Aβ peptide dimerization under conditions present in glutamatergic synapses. PLoS One 12:e0170749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hane F, Tran G, Attwood SJ, Leonenko Z (2013) Cu2+ affects amyloid-β (1–42) aggregation by increasing peptide–peptide binding forces. PLoS One 8:e59005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sitkiewicz E, Kłoniecki M, Poznański J, Bal W, Dadlez M (2014) Factors influencing compact–extended structure equilibrium in oligomers of Aβ1–40 peptide—an ion mobility mass spectrometry study. J Mol Biol 426:2871–2885

    Article  CAS  PubMed  Google Scholar 

  55. Pham DQH, Li MS, La Penna G (2018) Copper binding induces polymorphism in amyloid-β peptide: results of computational models. J Phys Chem B 122:7243–7252

    Article  CAS  PubMed  Google Scholar 

  56. Huy PDQ, Vuong QV, La Penna G, Faller P, Li MS (2016) Impact of Cu(II) binding on structures and dynamics of Aβ42 monomer and dimer: molecular dynamics study. ACS Chem Neurosci 7:1348–1363

    Article  CAS  PubMed  Google Scholar 

  57. La Penna G, Li MS (2019) Computational models explain how copper binding to amyloid-β peptide oligomers enhances oxidative pathways. Phys Chem Chem Phys 21:8774–8784

    Article  PubMed  Google Scholar 

  58. Somavarapu AK, Shen F, Teilum K, Zhang J, Mossin S, Thulstrup PW, Bjerrum MJ, Tiwari MK, Szunyogh D, Sotofte PM, Kepp KP, Hemmingsen L (2017) The pathogenic A2V mutant exhibits distinct aggregation kinetics, metal site structure, and metal exchange of the Cu2+–Aβ complex. Chemistry 23:13591–13595

    Article  CAS  PubMed  Google Scholar 

  59. Raman B, Ban T, Yamaguchi K, Sakai M, Kawai T, Naiki H, Goto Y (2005) Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid β peptide. J Biol Chem 280:16157–16162

    Article  CAS  PubMed  Google Scholar 

  60. Matheou CJ, Younan ND, Viles JH (2015) Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption. Biochem J 466:233

    Article  CAS  PubMed  Google Scholar 

  61. Gu M, Bode DC, Viles JH (2018) Copper redox cycling inhibits Aβ fibre formation and promotes fibre fragmentation, while generating a dityrosine Aβ dimer. Sci Rep 8:16190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang Q, Hu X, Wang W, Yuan Z (2016) Study of a bifunctional Aβ aggregation inhibitor with the abilities of antiamyloid-β and copper chelation. Biomacromol 17:661–668

    Article  CAS  Google Scholar 

  63. Cheng XR, Hau BYH, Veloso AJ, Martic S, Kraatz H-B, Kerman K (2013) Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals. Anal Chem 85:2049–2055

    Article  CAS  PubMed  Google Scholar 

  64. Jun S, Gillespie JR, Shin B-K, Saxena S (2009) The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-β(1–40) into amyloid fibrils. Biochemistry 48:10724–10732

    Article  CAS  PubMed  Google Scholar 

  65. Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s β by solid-state NMR spectroscopy. J Am Chem Soc 133:3390–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Rempel DL, Zhang J, Sharma AK, Mirica LM, Gross ML (2013) Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation. Proc Natl Acad Sci USA 110:14604–14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dai X, Sun Y, Gao Z, Jiang Z (2010) Copper enhances amyloid-β peptide neurotoxicity and non β-aggregation: a series of experiments conducted upon copper-bound and copper-free amyloid-β peptide. J Mol Neurosci 41:66–73

    Article  CAS  PubMed  Google Scholar 

  68. Dai X-L, Sun Y-X, Jiang Z-F (2006) Cu(II) potentiation of Alzheimer Aβ1-40 cytotoxicity and transition on its secondary structure. Acta Biochim Biophys Sin 38:765–772

    Article  CAS  PubMed  Google Scholar 

  69. Yoshiike Y, Tanemura K, Murayama O, Akagi T, Murayama M, Sato S, Sun X, Tanaka N, Takashima A (2001) New insights on how metals disrupt amyloid β-aggregation and their effects on amyloid-β cytotoxicity. J Biol Chem 276:32293–32299

    Article  CAS  PubMed  Google Scholar 

  70. Hu W-P, Chang G-L, Chen S-J, Kuo Y-M (2006) Kinetic analysis of β-amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing. J Neurosci Methods 154:190–197

    Article  CAS  PubMed  Google Scholar 

  71. Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI (2004) Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J Biol Inorg Chem 9:954–960

    Article  CAS  PubMed  Google Scholar 

  72. Klug GMJA, Losic D, Subasinghe SS, Aguilar M-I, Martin LL, Small DH (2003) β-amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH. Eur J Biochem 270:4282–4293

    Article  CAS  PubMed  Google Scholar 

  73. Olofsson A, Lindhagen-Persson M, Vestling M, Sauer-Eriksson AE, Öhman A (2009) Quenched hydrogen/deuterium exchange NMR characterization of amyloid-β peptide aggregates formed in the presence of Cu2+ or Zn2+. FEBS J 276:4051–4060

    Article  CAS  PubMed  Google Scholar 

  74. Ha C, Ryu J, Park CB (2007) Metal ions differentially influence the aggregation and deposition of Alzheimer’s β-amyloid on a solid template. Biochemistry 46:6118–6125

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki K, Miura T, Takeuchi H (2001) Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid β-peptide. Biochem Biophys Res Commun 285:991–996

    Article  CAS  PubMed  Google Scholar 

  76. Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, Barnham KJ, Cappai R (2007) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemistry 46:2881–2891

    Article  CAS  PubMed  Google Scholar 

  77. Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    Article  CAS  PubMed  Google Scholar 

  78. Mold M, Ouro-Gnao L, Wieckowski BM, Exley C (2013) Copper prevents amyloid-β(1-42) from forming amyloid fibrils under near-physiological conditions in vitro. Sci Rep 3:1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sharma AK, Pavlova ST, Kim J, Kim J, Mirica LM (2013) The effect of Cu2+ and Zn2+ on the Aβ42 peptide aggregation and cellular toxicity. Metallomics 5:1529–1536

    Article  CAS  PubMed  Google Scholar 

  80. Innocenti M, Salvietti E, Guidotti M, Casini A, Bellandi S, Foresti ML, Gabbiani C, Pozzi A, Zatta P, Messori L (2010) Trace copper(II) or zinc(II) ions drastically modify the aggregation behavior of amyloid-β1–42: an AFM study. J Alzheimers Dis 19:1323–1329

    Article  CAS  PubMed  Google Scholar 

  81. Keskitalo S, Farkas M, Hanenberg M, Szodorai A, Kulic L, Semmler A, Weller M, Nitsch RM, Linnebank M (2014) Reciprocal modulation of Aβ42 aggregation by copper and homocysteine. Front Aging Neurosci 6:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tew DJ, Bottomley SP, Smith DP, Ciccotosto GD, Babon J, Hinds MG, Masters CL, Cappai R, Barnham KJ (2008) Stabilization of neurotoxic soluble β-sheet-rich conformations of the Alzheimer’s disease amyloid-β peptide. Biophys J 94:2752–2766

    Article  CAS  PubMed  Google Scholar 

  83. Tõugu V, Karafin A, Zovo K, Chung RS, Howells C, West AK, Palumaa P (2009) Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-β (1–42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J Neurochem 110:1784–1795

    Article  PubMed  CAS  Google Scholar 

  84. Attanasio F, De Bona P, Cataldo S, Sciacca MFM, Milardi D, Pignataro B, Pappalardo G (2013) Copper(II) and zinc(II) dependent effects on Aβ42 aggregation: a CD, Th-T and SFM study. New J Chem 37:1206–1215

    Article  CAS  Google Scholar 

  85. Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P (2011) Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1–42 aggregation and toxicity. Int J Biochem Cell Biol 43:877–885

    Article  CAS  PubMed  Google Scholar 

  86. Bolognin S, Zatta P, Drago D, Parnigotto PP, Ricchelli F, Tognon G (2008) Mutual stimulation of β-amyloid fibrillogenesis by clioquinol and divalent metals. Neuromol Med 10:322–332

    Article  CAS  Google Scholar 

  87. Zou J, Kajita K, Sugimoto N (2001) Cu2+ inhibits the aggregation of amyloid β-peptide(1–42) in vitro. Angew Chem Int Ed Engl 40:2274–2277

    Article  CAS  PubMed  Google Scholar 

  88. House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C (2004) Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6:291–301

    Article  CAS  PubMed  Google Scholar 

  89. Rózga M, Bal W (2010) The Cu(II)/Aβ/human serum albumin model of control mechanism for copper-related amyloid neurotoxicity. Chem Res Toxicol 23:298–308

    Article  PubMed  CAS  Google Scholar 

  90. Barritt JD, Viles JH (2015) Truncated amyloid-β(11–40/42) from Alzheimer disease binds Cu2+ with a femtomolar affinity and influences fiber assembly. J Biol Chem 290:27791–27802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barritt JD, Younan ND, Viles JH (2017) N-terminally truncated amyloid-β(11–40/42) cofibrillizes with its full-length counterpart: implications for Alzheimer’s disease. Angew Chem Int Ed Engl 56:9816–9819

    Article  CAS  PubMed  Google Scholar 

  92. Bin Y, Li X, He Y, Chen S, Xiang J (2013) Amyloid-β peptide (1–42) aggregation induced by copper ions under acidic conditions. Acta Biochim Biophys Sin 45:570–577

    Article  CAS  PubMed  Google Scholar 

  93. Tõugu V, Tiiman A, Palumaa P (2011) Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 3:250–261

    Article  PubMed  CAS  Google Scholar 

  94. Guo M, Gorman PM, Rico M, Chakrabartty A, Laurents DV (2005) Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides. FEBS Lett 579:3574–3578

    Article  CAS  PubMed  Google Scholar 

  95. Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fändrich M (2005) The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation. Protein Sci 14:1753–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel J-P, Tanzi RE, Bush AI (1997) Zinc-induced Alzheimer’s Aβ1–40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470

    Article  CAS  PubMed  Google Scholar 

  97. Matheou CJ, Younan ND, Viles JH (2016) The rapid exchange of zinc2+ enables trace levels to profoundly influence amyloid-β misfolding and dominates assembly outcomes in Cu2+/Zn2+ mixtures. J Mol Biol 428:2832–2846

    Article  CAS  PubMed  Google Scholar 

  98. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  CAS  PubMed  Google Scholar 

  99. Hellstrand E, Boland B, Walsh DM, Linse S (2010) Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 1:13–18

    Article  CAS  PubMed  Google Scholar 

  100. Malmos KG, Blancas-Mejia LM, Weber B, Buchner J, Ramirez-Alvarado M, Naiki H, Otzen D (2017) ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24:1–16

    Article  CAS  Google Scholar 

  101. Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533

    Article  CAS  PubMed  Google Scholar 

  102. Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, Dobson CM, Linse S, Knowles TPJ (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad Sci USA 111:9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jun S, Saxena S (2007) The aggregated state of amyloid-β peptide in vitro depends on Cu2+ ion concentration. Angew Chem Int Ed Engl 46:3959–3961

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Christelle Hureau and Peter Faller for insightful discussions and input for this manuscript. We gratefully acknowledge financial support from the Lundbeck Foundation postdoctoral fellowship to MKT (Grant no: R231-2016-3276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Hemmingsen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weibull, M.G.M., Simonsen, S., Oksbjerg, C.R. et al. Effects of Cu(II) on the aggregation of amyloid-β. J Biol Inorg Chem 24, 1197–1215 (2019). https://doi.org/10.1007/s00775-019-01727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01727-5

Keywords

Navigation