Skip to main content

Advertisement

Log in

Copper, dityrosine cross-links and amyloid-β aggregation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper is involved in Alzheimer’s disease (AD) where it appears to affect the aggregation of amyloid-β (Aβ) and to catalyze the production of reactive oxygen species (ROS). Oxidative stress apparently produces Aβ dimers that are covalently linked through two tyrosine residues. Such dityrosine cross-links are considered as potential markers of the disease and seem to be implicated in the pathological disorder. In the present study, pure o,o′-dityrosine (diY) was prepared enzymatically (with horseradish peroxidase; HRP), which was subsequently used to construct calibration lines aimed at quantifying nanomolar amounts of diY in reaction mixtures by fluorescence spectroscopy. Hence, diY concentrations down to 67 nM could be determined, which allowed to find that ca. 3% of dityrosine-bridged dimers of Aβ(1–40) were produced after 3 days at 37 °C in the presence of copper and dihydrogen peroxide. These cross-linked dimers in the presence of copper(II) ions completely inhibit the typical aggregation of Aβ, since β sheets could not be detected applying the usual Thioflavin T (ThT) method. Furthermore, the use of a potent Cu(II) chelator, such as the ATCUN tripeptide, l-histidyl-l-alanyl-l-histidine (HAH), efficiently prevented the copper-mediated generation of ROS and the associated dityrosine-bridged Aβ dimers, suggesting that such metal chelators may find future applications in the field of anti-AD drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sensi SL, Granzotto A, Siotto M, Squitti R (2018) Trends Pharm Sci 39:1049–1063

    Article  CAS  PubMed  Google Scholar 

  2. Bush AI (2003) Trends Neurosci 26:207–214

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe DJ (1991) Neuron 6:487–498

    Article  CAS  PubMed  Google Scholar 

  4. Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT (1997) J Neurosci 17:7053–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali FE, Barnham KJ, Barrow CJ, Separovic F (2003) Lett Pept Sci 10:405–412

    Article  CAS  Google Scholar 

  6. Mathys ZK, White AR (2017) Adv Neurobiol 18:199–216

    Article  PubMed  Google Scholar 

  7. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Redox Biol 14:450–464

    Article  CAS  PubMed  Google Scholar 

  8. Ayton S, Lei P, Bush AI (2013) Free Radic Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  9. Levine RL, Stadtman ER (2001) Exp Gerontol 36:1495–1502

    Article  CAS  PubMed  Google Scholar 

  10. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Free Radic Biol Med 43:658–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu M, Bode DC, Viles JH (2018) Sci Rep 8:14

    Article  CAS  Google Scholar 

  12. Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, Barnham KJ, Cappai R (2007) Biochemistry 46:2881–2891

    Article  CAS  PubMed  Google Scholar 

  13. Kowalik-Jankowska T, Ruta M, Wisniewska K, Lankiewicz L, Dyba M (2004) J Inorg Biochem 98:940–950

    Article  CAS  PubMed  Google Scholar 

  14. Grasso G (2011) Mass Spectrom Rev 30:347–365

    Article  CAS  PubMed  Google Scholar 

  15. Pirota V, Dell’Acqua S, Monzani E, Nicolis S, Casella L (2016) Chem-Eur J 22:16962–16971

    Article  CAS  Google Scholar 

  16. Ali FE, Barnham KJ, Barrow CJ, Separovic F (2004) J Inorg Biochem 98:173–184

    Article  CAS  PubMed  Google Scholar 

  17. Giulivi C, Traaseth NJ, Davies KJA (2003) Amino Acids 25:227–232

    Article  CAS  PubMed  Google Scholar 

  18. Smith DG, Cappai R, Barnham KJ (2007) Biochim Biophys Acta-Biomembr 1768:1976–1990

    Article  CAS  Google Scholar 

  19. Al-Hilaly YK, Williams TL, Stewart-Parker M, Ford L, Skaria E, Cole M, Bucher WG, Morris KL, Sada AA, Thorpe JR, Serpell LC (2013) Acta Neuropathol Commun 1:17

    Article  Google Scholar 

  20. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW (1997) J Biol Chem 272:3520–3526

    Article  CAS  PubMed  Google Scholar 

  21. Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW (1999) J Biol Chem 274:34621–34628

    Article  CAS  PubMed  Google Scholar 

  22. Souza JM, Giasson BI, Chen QP, Lee VMY, Ischiropoulos H (2000) J Biol Chem 275:18344–18349

    Article  CAS  PubMed  Google Scholar 

  23. Kato Y, Wu XH, Naito M, Nomura H, Kitamoto N, Osawa T (2000) Biochem Biophys Res Commun 275:11–15

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan S, Chi EY, Wood SJ, Kendrick BS, Li C, Garzon-Rodriguez W, Wypych J, Randolph TW, Narhi LO, Biere AL, Citron M, Carpenter JF (2003) Biochemistry 42:829–837

    Article  CAS  PubMed  Google Scholar 

  25. DiMarco T, Giulivi C (2007) Mass Spectrom Rev 26:108–120

    Article  CAS  PubMed  Google Scholar 

  26. Kim K, Lee K, So S, Cho S, Lee M, You K, Moon J, Song T (2018) ECS J Solid State Sci Technol 7:P91–P95

    Article  CAS  Google Scholar 

  27. Kaushik N, Uddin N, Sim GB, Hong YJ, Baik KY, Kim CH, Lee SJ, Kaushik NK, Choi EH (2015) Sci Rep 5:11

    Google Scholar 

  28. Das TK, Wati MR, Fatima-Shad K (2015) Arch Neurosci 2:8

    Google Scholar 

  29. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  30. Moreira PI, Carvalho C, Zhu XW, Smith MA, Perry G (2010) Biochim Biophys Acta-Mol Basis Dis 1802:2–10

    Article  CAS  Google Scholar 

  31. Yao J, Irwin RW, Zhao LQ, Nilsen J, Hamilton RT, Brinton RD (2009) Proc Natl Acad Sci USA 106:14670–14675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang XD, Moir RD, Wang DD, Sayre LM, Smith MA, Chen SG, Bush AI (2004) Biochemistry 43:560–568

    Article  CAS  PubMed  Google Scholar 

  33. Shankar GM, Li SM, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Nat Med 14:837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de la Torre AV, Gay M, Vilaprinyo-Pascual S, Mazzucato R, Serra-Batiste M, Vilaseca M, Carulla N (2018) Anal Chem 90:4552–4560

    Article  CAS  Google Scholar 

  35. O’Malley TT, Oktaviani NA, Zhang DN, Lomakin A, O’Nuallain B, Linse S, Benedek GB, Rowan MJ, Mulder FAA, Walsh DM (2014) Biochem J 461:413–426

    Article  PubMed  CAS  Google Scholar 

  36. Galeazzi L, Ronchi P, Franceschi C, Giunta S (1999) Amyloid-Int J Exp Clin Investig 6:7–13

    CAS  Google Scholar 

  37. Witting PK, Mauk AG, Lay PA (2002) Biochemistry 41:11495–11503

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Sanchez MI, Garcia-Carmona F, Macia H, Valero E (2011) Arch Biochem Biophys 516:10–20

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe Y, Nakajima H (2016) Chapter twenty—creation of a thermally tolerant peroxidase. In: Pecoraro VL (ed) Methods in enzymology, vol 580. Academic Press, pp 455–470

    Google Scholar 

  40. Rodionov PV, Alieva EA, Sergeeva EA, Veselova IA, Shekhovtsova TN (2016) J Anal Chem 71:932–943

    Article  CAS  Google Scholar 

  41. Poulos TL (2014) Chem Rev 114:3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng WJ, Harper WF (2012) Enzyme Microb Technol 50:204–208

    Article  CAS  PubMed  Google Scholar 

  43. Oudgenoeg G, Hilhorst R, Piersma SR, Boeriu CG, Gruppen H, Hessing M, Voragen AGJ, Laane C (2001) J Agric Food Chem 49:2503–2510

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee S, Kapp EA, Lothian A, Roberts AM, Vasil’ev YV, Boughton BA, Barnham KJ, Kok WM, Hutton CA, Masters CL, Bush AI, Beckmann JS, Dey SG, Roberts BR (2017) Anal Chem 89:6137–6146

    Article  CAS  Google Scholar 

  45. Tomter AB, Zoppellaro G, Schmitzberger F, Andersen NH, Barra AL, Engman H, Nordlund P, Andersson KK (2011) PLoS One 6:11

    Article  CAS  Google Scholar 

  46. Petersson L, Graslund A, Ehrenberg A, Sjoberg BM, Reichard P (1980) J Biol Chem 255:6706–6712

    CAS  PubMed  Google Scholar 

  47. Wang WC, Noel S, Desmadril M, Gueguen J, Michon T (1999) Biochem J 340:329–336

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Michon T, Chenu M, Kellershon N, Desmadril M, Gueguen J (1997) Biochemistry 36:8504–8513

    Article  CAS  PubMed  Google Scholar 

  49. Williams TL, Serpell LC, Urbanc B (2016) BBA-Proteins Proteom 1864:249–259

    Article  CAS  Google Scholar 

  50. Hartter DE, Barnea A (1988) J Biol Chem 263:799–805

    CAS  PubMed  Google Scholar 

  51. Kampf CJ, Liu FB, Reinmuth-Selzle K, Berkemeier T, Meusel H, Shiraiwa M, Poschl U (2015) Environ Sci Technol 49:10859–10866

    Article  CAS  PubMed  Google Scholar 

  52. Verweij H, Christianse K, Vansteveninck J (1982) Biochim Biophys Acta 701:180–184

    Article  CAS  PubMed  Google Scholar 

  53. Berlett BS, Levine RL, Stadtman ER (1996) J Biol Chem 271:4177–4182

    Article  CAS  PubMed  Google Scholar 

  54. Xu CF, Chen YQ, Yi LD, Brantley T, Stanley B, Sosic Z, Zang L (2017) Anal Chem 89:7915–7923

    Article  CAS  PubMed  Google Scholar 

  55. Sjoberg B, Foley S, Cardey B, Fromm M, Enescu M (2018) J Photochem Photobiol B-Biol 188:95–99

    Article  CAS  Google Scholar 

  56. Folzer E, Diepold K, Bomans K, Finkler C, Schmidt R, Bulau P, Huwyler J, Mahler HC, Koulov AV (2015) J Pharm Sci 104:2824–2831

    Article  CAS  PubMed  Google Scholar 

  57. Mena S, Mirats A, Caballero AB, Guirado G, Barrios LA, Teat SJ, Rodriguez-Santiago L, Sodupe M, Gamez P (2018) Chem-Eur J 24:5153–5162

    Article  CAS  PubMed  Google Scholar 

  58. Caballero AB, Terol-Ordaz L, Espargaro A, Vazquez G, Nicolas E, Sabate R, Gamez P (2016) Chem-Eur J 22:7268–7280

    Article  CAS  PubMed  Google Scholar 

  59. Biancalana M, Koide S (2010) BBA-Proteins Proteom 1804:1405–1412

    Article  CAS  Google Scholar 

  60. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  61. La Penna G, Suan Li M (2019) Phys Chem Chem Phys 21:8774–8784

    Article  PubMed  Google Scholar 

  62. Kok WM, Cottam JM, Ciccotosto GD, Miles LA, Karas JA, Scanlon DB, Roberts BR, Parker MW, Cappai R, Barnham KJ, Hutton CA (2013) Chem Sci 4:4449–4454

    Article  CAS  Google Scholar 

  63. Pedersen JT, Ostergaard J, Rozlosnik N, Gammelgaard B, Heegaard NHH (2011) J Biol Chem 286:26952–26963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mold M, Ouro-Gnao L, Wieckowski BM, Exley C (2013) Sci Rep 3:6

    Article  CAS  Google Scholar 

  65. Sabate R, Estelrich J (2003) Biopolymers 72:455–463

    Article  CAS  PubMed  Google Scholar 

  66. Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H (1999) Biochemistry 38:15514–15521

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from MICINN (project CTQ2017-88446-R AEI/FEDER, UE). ABC thanks the European Union’s Horizon 2020 research and innovation programme for her Marie Skolodowska-Curie Grant No. 656820. PG acknowledges the Institució Catalana de Recerca i Estudis Avançats (ICREA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana B. Caballero, Raimon Sabaté or Patrick Gamez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, G., Caballero, A.B., Kokinda, J. et al. Copper, dityrosine cross-links and amyloid-β aggregation. J Biol Inorg Chem 24, 1217–1229 (2019). https://doi.org/10.1007/s00775-019-01734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01734-6

Keywords

Navigation