Skip to main content

Advertisement

Log in

Estimation of Safety and Quality Losses of Foods Stored in Residential Refrigerators

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

This article overviews the technological evolution of residential refrigerators, key national and international regulations covering them, and summarizes the information available to estimate the quality and safety deterioration in foods and beverages stored in them. At present, the national and international government standardized performance tests used to assess residential refrigerators focus on energy consumption. Efforts by refrigerator manufacturers to consider the impact of temperature fluctuation, temperature recovery, extreme ambient temperature, door openings, and other factors affecting temperature control and, thus, food safety and quality need to be harmonized, validated, and implemented as official standardized tests. Published predictive models here summarized, and describing microbial growth and other product degradation mechanisms, could be combined with energy efficiency evaluations in future science-based regulations seeking a balance between energy consumption and food preservation. While numerous mathematical models are available, this review identified a serious lack of model parameter values to allow a combined assessment of energy consumption and food preservation in residential refrigerators. Much of past research has focused on temperature abuse effects and, thus, not applicable to estimating food preservation under the prevailing temperatures in residential refrigerators. Particularly urgent is the data on the microorganisms’ response at multiple temperature levels, allowing the development of secondary models to assess the temperature effect on the safety and quality of a diverse but representative pool of products. New standardized testing procedures could then be developed to guide the design of new residential refrigerators minimizing food waste and the frequency of foodborne diseases while meeting energy consumption requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Almonacid-Merino SF, Thomas DR, Torres JA (1993) Numerical and statistical methodology to analyze microbial spoilage of refrigerated solid foods exposed to temperature abuse. J Food Sci 58:914–920

    Article  Google Scholar 

  2. Almonacid-Merino SF, Torres JA (1993) Mathematical models to evaluate temperature abuse effects during distribution of refrigerated solid foods. J Food Eng 20:223–245

    Article  Google Scholar 

  3. Almonacid-Merino SF, Torres JA (2010) Uncertainty of microbial shelf-life estimations for refrigerated foods due to the experimental variability of the model parameters. J Food Process Eng 33:66–84

    Article  Google Scholar 

  4. American National Standards Institute (2016) AHAM HRF-1-2016—energy and internal volume of refrigerating appliances. https://blog.ansi.org/2016/11/aham-hrf-1-2016-energy-volume-refrigerating-appliances/#gref. Accessed 16 Mar 2018

  5. Asia-Pacific Economic Cooperation Secretariat (2016) Differences/synergies between energy efficiency test methods for refrigerators in APEC region and with the new IEC 62552: desktop research. Asia-Pacific Economic Cooperation Secretariat. http://kms.energyefficiencycentre.org/sites/default/files/EWG%2004%202014A_Desktop%20Research_FINAL-20160314-clean_pdf.pdf. Accessed 09 Sep 2018 2018

  6. Ayala-Zavala JF, Wang SY, Wang CY, González-Aguilar GA (2004) Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT Food Sci Technol 37:687–695

    Article  CAS  Google Scholar 

  7. Azevedo I, Regalo M, Mena C, Almeida G, Carneiro Ĺ, Teixeira P, Hogg T, Gibbs PA (2005) Incidence of Listeria spp. in domestic refrigerators in Portugal. Food Control 16:121–124

    Article  Google Scholar 

  8. Bansal PK (2003) Developing new test procedures for domestic refrigerators: harmonisation issues and future R&D needs—a review. Int J Refrig 26:735–748

    Article  Google Scholar 

  9. Bansal PK, Krüger R (1995) Test standards for household refrigerators and freezers I: preliminary comparisons. Int J Refrig 18:4–20

    Article  CAS  Google Scholar 

  10. Baranyi J (1998) Comparison of stochastic and deterministic concepts of bacterial lag. J Theor Biol 192:403–408

    Article  CAS  PubMed  Google Scholar 

  11. Baranyi J, Roberts TA (1995) Mathematics of predictive food microbiology. Int J Food Microbiol 26:199–218

    Article  CAS  PubMed  Google Scholar 

  12. Bøgh-Sørensen L, Löndahl G (2005) Temperature indicators and time-temperature integrators. EcoLibrium 2:30–32

    Google Scholar 

  13. Bonino D, Corno F, de Russis L (2012) Home energy consumption feedback: a user survey. Energy Buildings 47:383–393

    Article  Google Scholar 

  14. Brown T, Hipps NA, Easteal S, Parry A, Evans JA (2014) Reducing domestic food waste by lowering home refrigerator temperatures. Int J Refrig 40:246–253

    Article  Google Scholar 

  15. Buchanan K, Russo R, Anderson B (2015) The question of energy reduction: the problem(s) with feedback. Energy Policy 77:89–96

    Article  Google Scholar 

  16. Buchanan RL, Stahl HG, Whiting RC (1989) Effects and interactions of temperature, pH, atmosphere, sodium chloride, and sodium nitrite on the growth of Listeria monocytogenes. J Food Prot 52:844–851

    Article  PubMed  Google Scholar 

  17. Canadian Standards Association (2015) CAN/CSA-C300-15—energy performance and capacity of household refrigerators, refrigerator-freezers, freezers, and wine chillers. http://shop.csa.ca/en/canada/energy-efficiency/cancsa-c300-15/invt/27013362015. Accessed 16 Mar 2018

  18. Cantwell MI, Reid MS (1993) Postharvest physiology and handling of fresh culinary herbs. J Herbs Spices Med Plants 1:93–127

    Article  Google Scholar 

  19. Cárdenas FC, Giannuzzi L, Zaritzky NE (2008) Mathematical modelling of microbial growth in ground beef from Argentina. Effect of lactic acid addition, temperature and packaging film. Meat Sci 79:509–520

    Article  CAS  PubMed  Google Scholar 

  20. Carpentier B, Lagendijk E, Chassaing D, Rosset P, Morelli E, Noël V (2012) Factors impacting microbial load of food refrigeration equipment. Food Control 25:254–259

    Article  Google Scholar 

  21. Chandler RE, McMeekin TA (1989) Temperature function integration as the basis of an accelerated method to predict the shelf life of pasteurized, homogenized milk. Food Microbiol 6:105–111

    Article  Google Scholar 

  22. China National Standards (2016) GB/T 8059-2016, Household and similar refrigerating appliances. http://www.gbstandards.org/GB_standards/GB_standard.asp?id=60626. Accessed 10 Nov 2018

  23. Chotyakul N, Pérez-Lamela C, Torres JA (2012) Effect of model parameter variability on the uncertainty of refrigerated microbial shelf-life estimates. J Food Process Eng 35:829–839

    Article  Google Scholar 

  24. Corbo MR, Altieri C, D’Amato D, Campaniello D, del Nobile MA, Sinigaglia M (2004) Effect of temperature on shelf life and microbial population of lightly processed cactus pear fruit. Postharvest Biol Technol 31:93–104

    Article  Google Scholar 

  25. da Silva NB, Longhi DA, Martins WF, Laurindo JB, de Aragão GMF, Carciofi BAM (2017) Modeling the growth of Lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. Int J Food Microbiol 240:97–101

    Article  CAS  PubMed  Google Scholar 

  26. da Silva PRS, Tessaro IC, Marczak LDF (2013) Integrating a kinetic microbial model with a heat transfer model to predict Byssochlamys fulva growth in refrigerated papaya pulp. J Food Eng 118:279–288

    Article  Google Scholar 

  27. Dalgaard P, Huss HH (1997) Mathematical modelling used for evaluation and prediction of microbial fish spoilage. In: Shahidi F, Jones Y, Kitts DD (eds) Seafood safety, processing, and biotechnology. Technomic Publishing Co. Inc., Lancaster, PA, pp 73–90

    Google Scholar 

  28. DiMascio M (2014) How your refrigerator has kept its cool over 40 years of efficiency improvements. American Council for an Energy-Efficient Economy (ACEEE), Washington, D.C.

    Google Scholar 

  29. Dincer I (2010) Food refrigeration aspects. In: Farid MM (ed) Mathematical modeling of food processing. CRC, Boca Raton, FL, pp 399–451

    Chapter  Google Scholar 

  30. Fang T, Gurtler JB, Huang L (2012) Growth kinetics and model comparison of Cronobacter sakazakii in reconstituted powdered infant formula. J Food Sci 77:E247–E255

    Article  CAS  PubMed  Google Scholar 

  31. Fang T, Liu Y, Huang L (2013) Growth kinetics of Listeria monocytogenes and spoilage microorganisms in fresh-cut cantaloupe. Food Microbiol 34:174–181

    Article  CAS  PubMed  Google Scholar 

  32. Fu D, Taoukis PS, Labuza TP (1991) Predictive microbiology for monitoring spoilage of dairy products with time-temperature integrators. J Food Sci 56:1209–1215

    Article  Google Scholar 

  33. Garrido V, García-Jalón I, Vitas AI (2010) Temperature distribution in Spanish domestic refrigerators and its effect on Listeria monocytogenes growth in sliced ready-to-eat ham. Food Control 21:896–901

    Article  CAS  Google Scholar 

  34. Geppert J (2011) Modelling of domestic refrigerators’ energy consumption under real life conditions in Europe. PhD, Rheinischen Friedrich-Wilhelms University

  35. Geppert J, Stamminger R (2013) Analysis of effecting factors on domestic refrigerators’ energy consumption in use. Energy Convers Manag 76:794–800

    Article  Google Scholar 

  36. Giannuzzi L, Pinotti A, Zaritzky N (1998) Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. Int J Food Microbiol 39:101–110

    Article  CAS  PubMed  Google Scholar 

  37. Gustafsson J, Cederberg C, Sonesson U, van Otterdijk R, Maybeck A (2011) Global food losses and food waste—extent, causes and prevention. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  38. Hertzmann P (2016) The refrigerator revolution. Gastronomy Symposium, Dublin, Ireland

    Google Scholar 

  39. Huang L (2008) Growth kinetics of Listeria monocytogenes in broth and beef frankfurters—determination of lag phase duration and exponential growth rate under isothermal conditions. J Food Sci 73:E235–E242

    Article  CAS  PubMed  Google Scholar 

  40. Huang L (2010) Growth kinetics of Escherichia coli O157:H7 in mechanically-tenderized beef. Int J Food Microbiol 140:40–48

    Article  CAS  PubMed  Google Scholar 

  41. Huang L (2015) Direct construction of predictive models for describing growth of Salmonella Enteritidis in liquid eggs—a one-step approach. Food Control 57:76–81

    Article  CAS  Google Scholar 

  42. Huang L (2016) Mathematical modeling and validation of growth of Salmonella Enteritidis and background microorganisms in potato salad—one-step kinetic analysis and model development. Food Control 68:69–76

    Article  Google Scholar 

  43. Huang L (2017) Dynamic identification of growth and survival kinetic parameters of microorganisms in foods. Curr Opin Food Sci 14:85–92

    Article  Google Scholar 

  44. Huang L, Hwang C-A (2017) Dynamic analysis of growth of Salmonella Enteritidis in liquid egg whites. Food Control 80:125–130

    Article  CAS  Google Scholar 

  45. Huis in’t Veld JHJ (1996) Microbial and biochemical spoilage of foods: an overview. Int J Food Microbiol 33:1–18

    Article  Google Scholar 

  46. International Electrotechnical Commission (2015a) Household refrigerating appliances—characteristics and test methods—part 3: energy consuption and volume. SAI Global. https://infostore.saiglobal.com/en-us/Standards/IEC-62552-3-1ED-2015-568190_SAIG_IEC_IEC_1297112/. Accessed 09 Sep 2018

  47. International Electrotechnical Commission (2015b) Household refrigerating appliances—characteristics and test methods—part 1: general requirements. Geneva, Switzerland

  48. International Electrotechnical Commission (2017) IEC 60316:1970—safety requirements for the electrical equipment of refrigerators and food freezers for household and similar purposes. https://webstore.iec.ch/publication/14722. Accessed 14 Nov 2017

  49. International Organization for Standardization (2007) ISO 15502:2005/Cor1:2007—household refrigerating appliances—characteristics and test methods. https://www.iso.org/standard/27428.html. Accessed 02 Nov 2018

  50. Jacxsens L, Devlieghere F, Debevere J (2002) Temperature dependence of shelf-life as affected by microbial proliferation and sensory quality of equilibrium modified atmosphere packaged fresh produce. Postharvest Biol Technol 26:59–73

    Article  CAS  Google Scholar 

  51. Jakobsen M, Bertelsen G (2000) Colour stability and lipid oxidation of fresh beef. Development of a response surface model for predicting the effects of temperature, storage time, and modified atmosphere composition. Meat Sci 54:49–57

    Article  CAS  PubMed  Google Scholar 

  52. Japanese Standards Association (2015) JIS C 9801:2015 household electric refrigerators, refrigerator-freezers and freezers. https://webdesk.jsa.or.jp/books/W11M0090/index/?bunsyo_id=JIS%20C%209607:2015. Accessed 20 Mar 2018

  53. Juneja VK, Valenzuela Melendres M, Huang L, Gumudavelli V, Subbiah J, Thippareddi H (2007) Modeling the effect of temperature on growth of Salmonella in chicken. Food Microbiol 24:328–335

    Article  PubMed  Google Scholar 

  54. Koseki S, Isobe S (2005) Growth of Listeria monocytogenes on iceberg lettuce and solid media. Int J Food Microbiol 101:217–225

    Article  PubMed  Google Scholar 

  55. Koutsoumanis K, Pavlis A, Nychas G-JE, Xanthiakos K (2010) Probabilistic model for Listeria monocytogenes growth during distribution, retail storage, and domestic storage of pasteurized milk. Appl Environ Microbiol 76:2181–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koutsoumanis K, Taoukis PS, Nychas GJE (2005) Development of a safety monitoring and assurance system for chilled food products. Int J Food Microbiol 100:253–260

    Article  CAS  PubMed  Google Scholar 

  57. Kovárová-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    PubMed  PubMed Central  Google Scholar 

  58. Kuan HW, Wong SE (2012) Lessons for integrated household energy conservation policies from an intervention study in Singapore. Energy Policy 47:49–56

    Article  Google Scholar 

  59. Laguerre O, Derens E, Palagos B (2002) Study of domestic refrigerator temperature and analysis of factors affecting temperature: a French survey. Int J Refrig 25:653–659

    Article  Google Scholar 

  60. Lana MM, Tijskens LMM, van Kooten O (2005) Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes. Postharvest Biol Technol 35:87–95

    Article  Google Scholar 

  61. Lanzavecchia D Refrigerators, freezers and relevant standards. In: Bertoldi P, Ricci A, Wajer BH (eds) Energy efficiency in household appliances: proceedings of the first international conference on energy efficiency in household appliances, Florence, Italy, November 10–12, 1997 1999. Springer Berlin 218–230

  62. Lebert I, Lebert A (2006) Quantitative prediction of microbial behaviour during food processing using an integrated modelling approach: a review. Int J Refrig 29:968–984

    Article  Google Scholar 

  63. Li C, Huang L, Hwang C-A, Chen J (2016) Growth of Listeria monocytogenes in salmon roe—a kinetic analysis. Food Control 59:538–545

    Article  Google Scholar 

  64. Li K, Torres JA (1993a) Effects of temperature and solute on the minimum water activity for growth and temperature characteristic of selected mesophiles and psychrotrophs. J Food Process Preserv 17:305–318

    Article  CAS  Google Scholar 

  65. Li K, Torres JA (1993b) Microbial growth estimation in liquid media exposed to temperature fluctuations. J Food Sci 58:644–648

    Article  Google Scholar 

  66. Li M, Huang L, Yuan Q (2017) Growth and survival of Salmonella Paratyphi A in roasted marinated chicken during refrigerated storage: effect of temperature abuse and computer simulation for cold chain management. Food Control 74:17–24

    Article  Google Scholar 

  67. Li Y, Brackett RE, Shewfelt RL, Beuchat LR (2001) Changes in appearance and natural microflora on iceberg lettuce treated in warm, chlorinated water and then stored at refrigeration temperature. Food Microbiol 18:299–308

    Article  CAS  Google Scholar 

  68. Luo Y, He Q, McEvoy JL (2010) Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing Romaine and Iceberg lettuce. J Food Sci 75:M390–M397

    Article  CAS  PubMed  Google Scholar 

  69. Lurie S, Crisosto CH (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208

    Article  Google Scholar 

  70. Mahlia TMI, Saidur R (2010) A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator–freezers. Renew Sust Energ Rev 14:1888–1900

    Article  CAS  Google Scholar 

  71. McDonald K, Sun D-W (1999) Predictive food microbiology for the meat industry: a review. Int J Food Microbiol 52:1–27

    Article  CAS  PubMed  Google Scholar 

  72. McKellar RC (2001) Development of a dynamic continuous-discrete-continuous model describing the lag phase of individual bacterial cells. J Appl Microbiol 90:407–413

    Article  CAS  PubMed  Google Scholar 

  73. McKellar RC, Lu X (2003) Modeling microbial responses in food. Contemporary food science. CRC, Boca Raton, FL

    Book  Google Scholar 

  74. McMeekin T, Olley J, Ratkowsky D, Corkrey R, Ross T (2013) Predictive microbiology theory and application: is it all about rates? Food Control 29:290–299

    Article  Google Scholar 

  75. McMeekin TA, Ross T (2002) Predictive microbiology: providing a knowledge-based framework for change management. Int J Food Microbiol 78:133–153

    Article  CAS  PubMed  Google Scholar 

  76. Ministério do Desenvolvimento Indústria e Comércio Exterior (2015) Portaria n.º 577, ANEXO A – Procedimento para ensaios de avaliação de desempenho dos refrigeradores e assemelhados. Instituto Nacional de Metrologia, Qualidade e Tecnologia -INMETRO. http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002335.pdf. Accessed Nov 11 2018

  77. Mishra A, Buchanan RL, Schaffner DW, Pradhan AK (2016) Cost, quality, and safety: a nonlinear programming approach to optimize the temperature during supply chain of leafy greens. LWT Food Sci Technol 73:412–418

    Article  CAS  Google Scholar 

  78. Montville TJ, Matthews KR (2013) Physiology, growth, and inhibition of microbes in foods. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4th edn. ASM Press, Washington, D.C.

    Google Scholar 

  79. Nadel S (1997) The future of standards. Energy Buildings 26:119–128

    Article  Google Scholar 

  80. Nagengast B (2004) 100 years of refrigeration: electric refrigerators vital contribution to households. ASHRAE J 46:S11-S15, S18-S19

  81. Neumeyer K (1995) Modelling Pseudomonad growth in milk and milk-based products. University of Tasmania

  82. Norma Oficial Mexicana (2018) NOM-015-ENER-2018, Eficiencia energética de refrigeradores y congeladores electrodomésticos. Límites, métodos de prueba y etiquetado http://dof.gob.mx/nota_to_doc.php?codnota=5529394. Accessed 08 Sep 2018

  83. Nourian F, Ramaswamy HS, Kushalappa AC (2003) Kinetics of quality change associated with potatoes stored at different temperatures. LWT Food Sci Technol 36:49–65

    Article  CAS  Google Scholar 

  84. Oscar TP (2007) Predictive models for growth of Salmonella typhimurium DT104 from low and high initial density on ground chicken with a natural microflora. Food Microbiol 24:640–651

    Article  CAS  PubMed  Google Scholar 

  85. Østergaard NB, Eklöw A, Dalgaard P (2014) Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. Int J Food Microbiol 188:15–25

    Article  CAS  PubMed  Google Scholar 

  86. Ozone Secretariat (2009) Handbook for the Vienna convention for the protection of the ozone layer, 8th edn. UNEP-United Nations Environment Programme, Nairobi, Kenya

    Google Scholar 

  87. Pérez-Rodríguez F, Valero A (2013) Predictive models: foundation, types, and development. In: Predictive microbiology in foods. Springer, New York, NY, pp 25–55

    Chapter  Google Scholar 

  88. Pham TQ (2014) Refrigeration in food preservation and processing. In: Bhattacharta S (ed) Conventional and advanced food processing technologies. Wiley Blackwell, West Sussex, UK, pp 357–386

    Google Scholar 

  89. Pinheiro J, Alegria C, Abreu M, Gonçalves EM, Silva CLM (2013) Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. J Food Eng 114:338–345

    Article  Google Scholar 

  90. Polydera AC, Stoforos NG, Taoukis PS (2005) Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice: nutritional parameters and shelf life. Innov Food Sci Emerg Technol 6:1–9

    Article  Google Scholar 

  91. Pouillot R, Albert I, Cornu M, Denis J-B (2003) Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes. Int J Food Microbiol 81:87–104

    Article  PubMed  Google Scholar 

  92. Raffo A, Nardo N, Tabilio MR, Paoletti F (2008) Effects of cold storage on aroma compounds of white- and yellow-fleshed peaches. Eur Food Res Technol 226:1503–1512

    Article  CAS  Google Scholar 

  93. Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ratkowsky DA, Ross T (1995) Modelling the bacterial growth/no growth interface. Lett Appl Microbiol 20:29–33

    Article  CAS  Google Scholar 

  95. Rees J (2013) Refrigeration nation: a history of ice, appliances, and enterprise in America. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  96. Rosso L, Lobry JR, Bajard S, Flandrois JP (1995) Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl Environ Microbiol 61:610–616

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sala JM (1998) Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. Postharvest Biol Technol 13:255–261

    Article  CAS  Google Scholar 

  98. Scott R (1994) The history of the International Energy Agency—the first twenty years 1974–1994: origins and structure vol 1. OECD/IEA, Paris, France

    Google Scholar 

  99. Shin Y, Liu RH, Nock JF, Holliday D, Watkins CB (2007) Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol Technol 45:349–357

    Article  CAS  Google Scholar 

  100. Singh RP, Heldman DR, Kirk JR (1975) Kinetic analysis of light-induced riboflavin loss in whole milk. J Food Sci 40:164–167

    Article  CAS  Google Scholar 

  101. Standards Australia (2018) AS/NZS IEC 62552.2:2018, household refrigerating appliances—characteristics and test methods, part 1: general requirements. https://www.standards.org.au/standards-catalogue/sa-snz/other/el-060/as-slash-nzs%2D%2Diec%2D%2D62552-dot-1-colon-2018. Accessed 16 Mar 2018

  102. Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Impe JF (2004) Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol 94:137–159

    Article  CAS  PubMed  Google Scholar 

  103. U.S. Department of Energy (2011) Comparison of real-world energy consumption to models and Department of Energy test procedures. Navigant Consulting, Inc. https://www1.eere.energy.gov/buildings/pdfs/real_world_energy_comparison.pdf. Accessed 10 Nov 2018

  104. Uhlich GA, Luchansky JB, Tamplin ML, Molina-Corral FJ, Anandan S, Porto-Fett A (2006) Effect of storage temperature on the growth of Listeria monocytogenes on Queso Blanco slices. J Food Saf 26:202–214

    Article  Google Scholar 

  105. Vaclavik VA, Christian EW (2008) Food preservation and processing. In: Essentials of food science. Springer, New York, NY, pp 425–446

    Chapter  Google Scholar 

  106. van Boekel MAJS (2008) Kinetic modeling of food quality: a critical review. Compr Rev Food Sci Food Saf 7:144–158

    Article  Google Scholar 

  107. van Derlinden E, Mertens L, van Impe JF (2013) Predictive microbiology. In: Doyle MP, Buchanan RL (eds) Food microbiology. American Society of Microbiology, Washington, DC, pp 997–1022

    Google Scholar 

  108. Wang Y, Luo Z, Khan ZU, Mao L, Ying T (2015) Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress. Postharvest Biol Technol 108:21–27

    Article  CAS  Google Scholar 

  109. Whiting RC, Buchanan CE (1997) Development of a quantitative risk assessment model for Salmonella enteritidis in pasteurized liquid eggs. Int J Food Microbiol 36:111–125

    Article  CAS  PubMed  Google Scholar 

  110. Whiting RC, Buchanan RL (1993) A classification of models in predictive microbiology—a reply to KR Davey. Food Microbiol 10:175–177

    Article  Google Scholar 

  111. Williams J (2018) The ozone hole: a story of healing and hope. Weatherwise 71:12–17

    Article  Google Scholar 

  112. Wolfram C, Shelef O, Gertler P (2012) How will energy demand develop in the developing world? J Econom Persp 26:119–138

    Article  Google Scholar 

  113. Xanthiakos K, Simos D, Angelidis AS, Nychas GJ-E, Koutsoumanis K (2006) Dynamic modeling of Listeria monocytogenes growth in pasteurized milk. J Appl Micobiol 100:1289–1298

    Article  CAS  Google Scholar 

  114. Yang H, Wu F, Cheng J (2011) Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127:1237–1242

    Article  CAS  PubMed  Google Scholar 

  115. Zhang L, Li X, Lu W, Shen H, Luo Y (2011) Quality predictive models of grass carp (Ctenopharyngodon idellus) at different temperatures during storage. Food Control 22:1197–1202

    Article  Google Scholar 

  116. Zurera-Cosano G, García-Gimeno RM, Rodríguez-Pérez R, Hervás-Martínez C (2006) Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control 17:429–438

    Article  Google Scholar 

  117. Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge the support from Tecnologico de Monterrey (Research chair funds GEE 1A01001 and CDB081) and from Embraco Mexico S de RL de CV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabian Fagotti or J. Antonio Torres.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Martinez, V., Velazquez, G., Massa-Barrera, S. et al. Estimation of Safety and Quality Losses of Foods Stored in Residential Refrigerators. Food Eng Rev 11, 184–199 (2019). https://doi.org/10.1007/s12393-019-09192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-019-09192-1

Keywords

Navigation