Skip to main content

Advertisement

Log in

Analysis and Prediction Methods for Energy Efficiency and Media Demand in the Beverage Industry

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Since the production of food and beverages is energy-intensive, the political, economic, ecologic and social conditions are posing a challenge to the manufacturing industry. Small- and medium-sized companies in particular lack the time and knowledge to identify and implement suitable energy efficiency measures. With the help of computer-aided solutions, decision-makers can pursue numerous approaches and make well-founded decisions. The aim of this review is to summarise and critically discuss current analysis and prediction methods concerning energy and media consumption in the beverage industry. To date, there have been no tools or approaches available that permit a simple, holistic analysis and prediction. Breweries serve as a good example for the beverage industry due to numerous and various complex processes. To identify energy-saving potential, the main consumers and consumption structures within the brewery are presented. Current approaches such as simulations, pinch analyses, benchmarks and real-time operating systems are briefly explained, and the relevant publications related to the beverage industry described and categorised. The critical comparison of the different approaches clearly shows that simulation enables a holistic analysis and prediction of energy and media consumption in the brewery. Since the data basis is mostly insufficient and this method requires expert knowledge, we propose a holistic modelling and simulation approach. An easy-to-use and context-free modelling environment should enable the generation of a simulation model, with limited expertise or effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. EIA. (2017). Prognose zum weltweiten Primärenergieverbrauch bis zum Jahr 2050 (in Billiarden BTU). Retrieved from https://de.statista.com/statistik/daten/studie/28941/umfrage/prognose-zum-energieverbrauch-weltweit-betrachtet-von-1980-bis-2030/. Accessed 16 Jan 2019

  2. Exxon Mobil Corporation. (2018). 2018 Outlook for energy: a view to 2040. Retrieved from https://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2018/2018-outlook-for-energy.pdf. Accessed 11 Jan 2019

  3. BP p.l.c (2017). BP statistical review of world energy 2017. Retrieved from https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf. Accessed 16 Jan 2019

  4. Statistisches Bundesamt (Destatis). (2017). Energieverwendung in der Industrie, Beschäftigte und Umsatz nach ausgewählten Wirtschaftszweigen. Retrieved from https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/Energie/Verwendung/Verwendung.html#Tabellen. Accessed 16 Jan 2019

  5. Nassauer J (2004) Energieeinsparung in der Lebensmittelindustrie. In: Heiss R (ed) Lebensmitteltechnologie, 6th edn. Springer-Verlag, Berlin, pp 509–522

    Chapter  Google Scholar 

  6. Schlesinger M, Hofer P, Kemmler A, Kirchner A, Koziel S, Ley A, . . . Ulrich, P. (2014). Entwicklung der Energiemärkte – Energiereferenzprognose

  7. Schröter M, Weißfloch U, & Buschak D (2009). Energieeffizienz in der Produktion - Wunsch oder Wirklichkeit? Energieeinsparpotenziale und Verbreitungsgrad energieeffizienter Techniken (51). Retrieved from http://hdl.handle.net/10419/29650. Accessed 15 Jan 2019

  8. Thollander P, Backlund S, Trianni A, Cagno E (2013) Beyond barriers – a case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden. Appl Energy 111:636–643. https://doi.org/10.1016/j.apenergy.2013.05.036

    Article  Google Scholar 

  9. Statistisches Bundesamt (Destatis). (2019e). Umsatz der Lebensmittelindustrie in Deutschland in den Jahren 2008 bis 2017 (in Milliarden Euro). Retrieved from https://de.statista.com/statistik/daten/studie/164959/umfrage/umsatz-der-nahrungsmittelindustrie-in-deutschland-seit-2005. Accessed 16 Jan 2019

  10. Statistisches Bundesamt (Destatis). (2019c). Umsatz der Getränkeindustrie in Deutschland in den Jahren 2008 bis 2017 ( in Millionen Euro ). Retrieved from https://de.statista.com/statistik/daten/studie/305466/umfrage/umsatz-der-getraenkeindustrie-in-deutschland. Accessed 16 Jan 2019

  11. Statistisches Bundesamt (Destatis). (2019d). Umsatz der Getränkeindustrie in Deutschland nach Segmenten in den Jahren 2013 bis 2017 ( in Millionen Euro ). Retrieved from https://de.statista.com/statistik/daten/studie/305480/umfrage/umsatz-der-getraenkeindustrie-in-deutschland-nach-segmenten. Accessed 16 Jan 2019

  12. Statistisches Bundesamt (Destatis). (2019a). Konsumausgaben der privaten Haushalte in Deutschland für alkoholfreie Getränke in den Jahren 1991 bis 2017 (in Milliarden Euro). Retrieved from https://de.statista.com/statistik/daten/studie/296820/umfrage/konsumausgaben-in-deutschland-fuer-alkoholfreie-getraenke/. Accessed 16 Jan 2019

  13. Statistisches Bundesamt (Destatis). (2019b). Konsumausgaben der privaten Haushalte in Deutschland für alkoholische Getränke in den Jahren 1991 bis 2017 (in Milliarden Euro). Retrieved from https://de.statista.com/statistik/daten/studie/296826/umfrage/konsumausgaben-indeutschlandfuer-alkoholischegetraenke/. Accessed 16 Jan 2019

  14. Blesl M, Kessler A (2013) Energieeffizienz in der Industrie. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  15. Schade D. (1995). Energiebedarf Energiebereitstellung Energienutzung: Möglichkeiten und Maßnahmen zur Verringerung der CO2-Emission. Veröffentlichungen der Akademie für Technikfolgenabschätzung in Baden-Württemberg. Berlin, Heidelberg: Springer. Retrieved from https://doi.org/10.1007/978-3-642-79937-2

  16. Sorrell S, Schleich J, Scott S, O’Malley E, Trace F, Boede U, . . . Radgen P (2000). Barriers to energy efficiency in public and private organisations. Sussex

  17. Sorrell S, Mallett A, & Nye S (2011). Barriers to industrial energy efficiency: a literature review: working paper

  18. Trianni A, Cagno E, Thollander P, Backlund S (2013) Barriers to industrial energy efficiency in foundries: a European comparison. J Clean Prod 40:161–176. https://doi.org/10.1016/j.jclepro.2012.08.040

    Article  Google Scholar 

  19. Fleiter T, Worrell E, Eichhammer W (2012) The characteristics of energy-efficiency measures – a neglected dimension. Energy Policy 51:502–513. https://doi.org/10.1016/j.enpol.2012.08.054

    Article  Google Scholar 

  20. Kubule A, Zogla L, Ikaunieks J, Rosa M (2016a) Highlights on energy efficiency improvements: a case of a small brewery. J Clean Prod 138:275–286. https://doi.org/10.1016/j.jclepro.2016.02.131

    Article  Google Scholar 

  21. Cagno E, Worrell E, Trianni A, Pugliese G (2013) A novel approach for barriers to industrial energy efficiency. Renew Sust Energ Rev 19:290–308. https://doi.org/10.1016/j.rser.2012.11.007

    Article  Google Scholar 

  22. de Groot HLF, Verhoef ET, Nijkamp P (2001) Energy saving by firms: decision-making, barriers and policies. Energy Econ 23(6):717–740. https://doi.org/10.1016/S0140-9883(01)00083-4

    Article  Google Scholar 

  23. Masselink JD (2008). Barriers to investments in energy saving technologies: case study for the industry

  24. Galitsky C, Martin N, Worrell E, & Lehman B (2016). Energy efficiency improvement and cost saving opportunities for breweries

  25. Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO (2011) Integrating energy efficiency performance in production management – gap analysis between industrial needs and scientific literature. J Clean Prod 19(6–7):667–679. https://doi.org/10.1016/j.jclepro.2010.11.011

    Article  Google Scholar 

  26. Narziß L, & Back W (2009). Die Bierbrauerei: Band 2: Die Technologie der Würzebereitung (8. Auflage). Weinheim: Wiley-VCH

  27. Kunze W, & Mieth HO (1998). Technologie Brauer und Mälzer (8., völlig neu bearb. Aufl.). Berlin: VLB

  28. Schu G, & Kern M (2017). Betriebevergleich Energie 2012–2014

  29. Heuven F, van Beek T, Jackson G, Johnson A (2013) Benchmarking der Energie- und Wassereffizienz im Brauereisektor. Brauwelt 153:851–853

    Google Scholar 

  30. Hackensellner T (2000). Rationeller Energieeinsatz im Sudhaus

  31. Osterroth I, Holm A, Voigt T (2017a) State of the art survey of the energy and media demand of German beverage-bottling plants. Brewing Science 70:89–99. https://doi.org/10.23763/BrSc17-08Osterroth

    Article  Google Scholar 

  32. Osterroth I, Klein S, Nophut C, Voigt T (2017b) Operational state related modelling and simulation of the electrical power demand of beverage bottling plants. J Clean Prod 162:587–600. https://doi.org/10.1016/j.jclepro.2017.06.006

    Article  Google Scholar 

  33. ISO (2018). Energy management systems - requirements with guidance for use. (ISO, ISO 50001:2018)

  34. May G, Barletta I, Stahl B, Taisch M (2015) Energy management in production: a novel method to develop key performance indicators for improving energy efficiency. Appl Energy 149:46–61. https://doi.org/10.1016/j.apenergy.2015.03.065

    Article  Google Scholar 

  35. Schmidt C, Li W, Thiede S, Kornfeld B, Kara S, Herrmann C (2016) Implementing key performance indicators for energy efficiency in manufacturing. Procedia CIRP 57:758–763. https://doi.org/10.1016/j.procir.2016.11.131

    Article  Google Scholar 

  36. Dietmair A, & Verl A (2009). Energy consumption forecasting and optimisation for tool machines. MM Science Journal. (01), 63–67. https://doi.org/10.17973/MMSJ.2009_03_20090305

  37. Michel R, Vollhals B (2002) Reduction of wort thermal stress—relative to heating methods and wort treatment. Tech Quarterly Master Brew 39:159–163

    Google Scholar 

  38. Michel R, Vollhals B (2003) Dynamic wort boiling. Tech Quarterly Master Brew 40:25–29

    CAS  Google Scholar 

  39. Muster-Slawitsch B, Weiss W, Schnitzer H, Brunner C (2011) The green brewery concept – energy efficiency and the use of renewable energy sources in breweries. Appl Therm Eng 31(13):2123–2134. https://doi.org/10.1016/j.applthermaleng.2011.03.033

    Article  CAS  Google Scholar 

  40. Schneid R, Buchhauser U, Ottmann N, Kammerloher H (2018) Brewnomic - Part 2: The Brewing Power Plant. Brauwelt Int 36:426–429

    Google Scholar 

  41. Wasmuth K, Becher T (2013) Regenerativ genutztes Heißwasser ersetzt Dampfbetrieb. Brauwelt 153:950–953

    Google Scholar 

  42. Willaert RG, Baron GV (2004) Applying sustainable technology for saving primary energy in the brewhouse during beer brewing. Clean Techn Environ Policy 7(1):15–32. https://doi.org/10.1007/s10098-004-0249-8

    Article  Google Scholar 

  43. Thomas KR, Rahman PKSM (2006) Brewery wastes. Strategies for sustainability. A review. Asp Appl Biol 80:147–153

    Google Scholar 

  44. Ahrens A (2007) Stabile Prozessfuhrung und Biogasgewinnung bei anaerober Abwasserklartechnik. Brauwelt 38(39):1050–1051

    Google Scholar 

  45. DWA. (2010). Merkblatt DWA-M 732 Abwasser aus Brauereien. Hennef: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V

  46. Herfellner T (2011) Anaerobe Hydrolyse und Methanisierung fester, flüssiger und pastöser organischer Produktionsrückstände aus Brauereien. Technische Universität, München

    Google Scholar 

  47. Li Y, Qiu Q, He X, & Li J (2011). Energy use project and conversion efficiency analysis on biogas produced in breweries. Linköping Electronic Conference Proceedings, 1489–1496. https://doi.org/10.3384/ecp110571489

  48. Scheller L, Michel R (2012) Brewing beer – efficient and sustainable technologies in regard to energy and raw material input. ERSCP Workshop, Bregenz

    Google Scholar 

  49. Weger A, Binder S, Ruß W (2013) Kombinierter Ansatz zur Nutzung von Biertrebern. Brauwelt 1-2(2013):13–17

    Google Scholar 

  50. Mekhilef S, Saidur R, Safari A (2011) A review on solar energy use in industries. Renew Sust Energ Rev 15(4):1777–1790. https://doi.org/10.1016/j.rser.2010.12.018

    Article  Google Scholar 

  51. Müller H (2015). Ergebnisse Energieeinsparkonzept

  52. Schmitt B, Lauterbach C, & Vajen K (2012). Branchenkonzept Solare Prozesswärme in Brauereien: Teil 2 des Abschlussberichtes zum Forschungsvorhaben „SOPREN – Solare Prozesswärme und Energieeffizienz“ Förderkennzeichen: 0329601T

  53. Gahbauer H, Raidl H, Werner A, Muster-Slawitsch B, Ribeiro de Lima D, Berghold H, ... Stelzer R (2009). Green brewery

  54. Pöschko E, & Grasmück R (2000). FB-Vision 2020: Energieversorgung Braucommune in Freistadt

  55. Sturm B, Butcher M, Wang Y, Huang Y, Roskilly T (2012) The feasibility of the sustainable energy supply from bio wastes for a small scale brewery – a case study. Appl Therm Eng 39:45–52. https://doi.org/10.1016/j.applthermaleng.2012.01.036

    Article  CAS  Google Scholar 

  56. Gahm C, Denz F, Dirr M, Tuma A (2016) Energy-efficient scheduling in manufacturing companies: a review and research framework. Eur J Oper Res 248(3):744–757. https://doi.org/10.1016/j.ejor.2015.07.017

    Article  Google Scholar 

  57. Meyers S, Schmitt B, Chester-Jones M, Sturm B (2016) Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries. Energy 104:266–283. https://doi.org/10.1016/j.energy.2016.03.117

    Article  Google Scholar 

  58. Chaabane A, Ramudhin A, Paquet M (2012) Design of sustainable supply chains under the emission trading scheme. Int J Prod Econ 135(1):37–49. https://doi.org/10.1016/j.ijpe.2010.10.025

    Article  Google Scholar 

  59. Absi N, Dauzère-Pérès S, Kedad-Sidhoum S, Penz B, Rapine C (2013) Lot sizing with carbon emission constraints. Eur J Oper Res 227(1):55–61. https://doi.org/10.1016/j.ejor.2012.11.044

    Article  Google Scholar 

  60. Zheng H-Y, Wang L (2015) Reduction of carbon emissions and project makespan by a Pareto-based estimation of distribution algorithm. Int J Prod Econ 164:421–432. https://doi.org/10.1016/j.ijpe.2014.12.010

    Article  Google Scholar 

  61. Olajire, A. A. (2012). The brewing industry and environmental challenges. Journal of Cleaner Production Advance online publication https://doi.org/10.1016/j.jclepro.2012.03.003

  62. Wang F, Lai X, Shi N (2011) A multi-objective optimization for green supply chain network design. Decis Support Syst 51(2):262–269. https://doi.org/10.1016/j.dss.2010.11.020

    Article  Google Scholar 

  63. Müller E, Engelmann J, Löffler T, Strauch J (2009) Energieeffiziente Fabriken planen und betreiben. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  64. Lee D, Cheng C-C (2016) Energy savings by energy management systems: a review. Renew Sust Energ Rev 56:760–777. https://doi.org/10.1016/j.rser.2015.11.067

    Article  Google Scholar 

  65. Zhu Q, Lujia F, Mayyas A, Omar MA, Al-Hammadi Y, Al Saleh S (2015) Production energy optimization using low dynamic programming, a decision support tool for sustainable manufacturing. J Clean Prod 105:178–183. https://doi.org/10.1016/j.jclepro.2014.02.066

    Article  Google Scholar 

  66. Mignon D, Hermia J (1993) Using batches for modeling and optimizing the brewhouse of an industrial brewery. Comput Chem Eng 17:51–56

    Article  Google Scholar 

  67. Ito K, Shiba T, Yokoyama R, Sakashita S (1994) An optimal operational advisory system for a brewery’s energy supply plant. J Energy Resour Technol 116:65–71

    Article  Google Scholar 

  68. Mignon D, Hermia J (1996) Peak utility load reduction in batch processes operated periodically and under uncertainty. Comput Chem Eng 20(3):249–263. https://doi.org/10.1016/0098-1354(95)00041-0

    Article  CAS  Google Scholar 

  69. Zhelev TK (2005) Water conservation through energy management. J Clean Prod 13(15):1395–1404. https://doi.org/10.1016/j.jclepro.2005.04.007

    Article  Google Scholar 

  70. Zhelev TK, Zheleva SR (2002) Combined pinch analysis for more efficient energy and water resources management in beverage industry. WIT Trans Ecol Environ 56(56):623–632

    Google Scholar 

  71. Dilay E, Vargas JVC, Amico SC, Ordonez JC (2006) Modeling, simulation and optimization of a beer pasteurization tunnel. J Food Eng 77(3):500–513. https://doi.org/10.1016/j.jfoodeng.2005.07.001

    Article  Google Scholar 

  72. Waheed MA, Jekayinfa SO, Ojediran JO, Imeokparia OE (2008) Energetic analysis of fruit juice processing operations in Nigeria. Energy 33(1):35–45. https://doi.org/10.1016/j.energy.2007.09.001

    Article  Google Scholar 

  73. Johansson B, Stahre J, Berlin J, Östergren K, Sundström B, & Tillmann A-M (2008). Discrete event simulation with lifecycle assessment data at a juice manufacturing system. Proceedings of FOODSIM 2008 Conference

  74. Lees M, Ellen R, Brodie P, & Steffens M (2009a). A real-time utilities management system for optimising cleaning operations in a brewery. In IEEE International Conference on Industrial Technology, 2009: ICIT 2009 ; 10–13 Feb. 2009, Churchill, Victoria, Australia (pp. 1–6). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICIT.2009.4939519

  75. Lees M, Ellen R, Brodie P, Steffens M, Newell B, & Wilkey D (2009b). A utilities consumption model for real-time load identification in a brewery. In IEEE International Conference on Industrial Technology, 2009: ICIT 2009 ; 10–13 Feb. 2009, Churchill, Victoria, Australia (pp. 1–6). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICIT.2009.4939642

  76. Dumbliauskaite M, Becker H, & Maréchal F (2010). Utility optimization in a brewery process based on energy integration methodology

  77. Fadare DA, Nkpubre DO, Oni AO, Falana A, Waheed MA, Bamiro OA (2010) Energy and exergy analyses of malt drink production in Nigeria. Energy 35(12):5336–5346. https://doi.org/10.1016/j.energy.2010.07.026

    Article  Google Scholar 

  78. Tokos H, Pintarič ZN, Glavič P (2010) Energy saving opportunities in heat integrated beverage plant retrofit. Appl Therm Eng 30(1):36–44. https://doi.org/10.1016/j.applthermaleng.2009.03.008

    Article  CAS  Google Scholar 

  79. Marty H, Schmitt B, & Frank E (2010). Audit Feldschlösschen Getränke AG

  80. Nagel MJO (2011). Softwaretools zur Kapazitätsplanung in lebensmittel- und biotechnologischen Betrieben. Zugl. München, Techn. Univ., Diss., 2011. Automatisierungstechnik/Prozessinformatik. Aachen: Shaker

  81. Bai J, Pu T, Xing J, Niu G, Zhang S, & Liu Q (2011). Research on energy consumption analysis of beer brewing process. International Conference on Electronic & Mechanical Engineering and Information Technology, 182–185. https://doi.org/10.1109/EMEIT.2011.6022892

  82. James M, & Kariuki BK (2012). Energy optimization in the brewing industry: case study of East African Breweries Limited Nairobi. Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, 4

  83. Yang ZY, Luo HE, Xu YB, Du QP, Li L (2012) Practice of E-P analysis on cleaner production in a beer factory. Adv Mater Res 610-613:2627–2631. https://doi.org/10.4028/www.scientific.net/AMR.610-613.2627

    Article  Google Scholar 

  84. Forster T (2013). Modellierung und Simulation von Getränkeabfüll- und Verpackungsanlagen unter Berücksichtigung von Energie- und Medienverbräuchen. Simulation in Produktion Und Logistik

  85. Sturm B, Hugenschmidt S, Joyce S, Hofacker W, Roskilly AP (2013) Opportunities and barriers for efficient energy use in a medium-sized brewery. Appl Therm Eng 53(2):397–404. https://doi.org/10.1016/j.applthermaleng.2012.05.006

    Article  Google Scholar 

  86. Muster-Slawitsch B, Brunner C, Fluch J (2014a) Application of an advanced pinch methodology for the food and drink production. Wiley Interdiscip Rev: Energy and Environment 3(6):561–574. https://doi.org/10.1002/wene.117

    Article  Google Scholar 

  87. Muster-Slawitsch B, Hubmann M, Murkovic M, Brunner C (2014b) Process modelling and technology evaluation in brewing. Chem Eng Process Process Intensif 84:98–108. https://doi.org/10.1016/j.cep.2014.03.010

    Article  CAS  Google Scholar 

  88. Marchini D, Rinaldi M, Montanari R, Bottani E, Solari F (2014) Performance analysis of the water supply system of a dairy company by means of an advanced simulation tool. Int J Food Eng 10(4). https://doi.org/10.1515/ijfe-2013-0067

  89. Hubert S, Pettigrew L, Helmers T, Mießner U, Groß F, Räbiger N, Delgado A (2014) Simulation-based optimisation of wastewater flow and composition for on-site treatment in the food and beverage industry utilising reference nets in combination with genetic algorithms. PAMM 14(1):811–812. https://doi.org/10.1002/pamm.201410386

    Article  Google Scholar 

  90. Hubert S, Baur F, Delgado A, Helmers T, Rabiger N (2015) Simulation modeling of bottling line water demand levels using reference nets and stochastic models. Winter Simul Conf WSC 2015:2272–2282. https://doi.org/10.1109/WSC.2015.7408339

    Article  Google Scholar 

  91. Pettigrew L, Blomenhofer V, Hubert S, Groß F, Delgado A (2015) Optimisation of water usage in a brewery clean-in-place system using reference nets. J Clean Prod 87:583–593. https://doi.org/10.1016/j.jclepro.2014.10.072

    Article  Google Scholar 

  92. Zogla L, Zogla G, Beloborodko A, Rosa M (2015) Process benchmark for evaluation energy performance in breweries. Energy Procedia 72:202–208. https://doi.org/10.1016/j.egypro.2015.06.029

    Article  Google Scholar 

  93. Müller H (2016). Solar process heat in the food industry: methodical analysis and design of a sustainable process heat supply in a brewery and a dairy (dissertation). De Montfort University Leicester

  94. Hubert S, Helmers T, Groß F, Delgado A (2016a) Data driven stochastic modelling and simulation of cooling demand within breweries. J Food Eng 176:97–109. https://doi.org/10.1016/j.jfoodeng.2015.06.032

    Article  Google Scholar 

  95. Hubert S, Rückert D, & Delgado A (2016b). Hybrid plant-wide simulation and modelling using reference nets and java. In Z. Kravanja (Ed.), Computer aided chemical engineering: volume 38. 26th European Symposium on Computer Aided Process Engineering: part A (Vol. 38, pp. 853–858). Amsterdam, Netherlands: Elsevier Science. https://doi.org/10.1016/B978-0-444-63428-3.50147-8

  96. Kubule A, Zogla L, Rosa M (2016b) Resource and energy efficiency in small and medium breweries. Energy Procedia 95:223–229. https://doi.org/10.1016/j.egypro.2016.09.055

    Article  Google Scholar 

  97. Tibasiima N, Okullo A (2017) Energy targeting for a brewing process using pinch analysis. Energy Power Eng 09(01):11–21. https://doi.org/10.4236/epe.2017.91002

    Article  Google Scholar 

  98. American National Standards Institute. (2010). ANSI-ISA-88.00.01-2010: batch control part 1: models and terminology. Research Triangle Park, North Carolina: ISA

  99. Verein Deutscher Ingenieure e.V (2014). Simulation von Logistik-, Materialfluss und Produktionssystemen - Grundlagen Blatt 1. (VDI-Richtlinie, VDI 3633)

  100. Gutenschwager K, Rabe M, Spieckermann S, Wenzel S (2017) Simulation in Produktion und Logistik: Grundlagen und Anwendungen. Springer Vieweg, Berlin

    Book  Google Scholar 

  101. Hedtstück U (ed) (2013) Simulation diskreter Prozesse: Methoden und Anwendungen. eXamen.press. Springer Vieweg, Berlin, Heidelberg

    Google Scholar 

  102. Basán, N., Cóccola, M., & Méndez, C. (2014). Optimizing the design and operation of a beer packaging line through an advanced simio-based DES tool. Proceedings of the 2014 Winter Simulation Conference, 1989–2000

  103. Bernhard J, & Kahe T (2008). Simulation und Modellmanagement in der Getränkeindustrie. Advances in Simulation for Production, 199–208

  104. Hasenschwanz W, & Selig R (2009). Nutzbringende Ergebnisse: Prozesssimulation in einer Brauerei. Brauindustrie, 09/2009, 84–87

  105. Ju Y, Wang A, Zhu F, & Xia C (2005). Mining data from simulation of beer production. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge, 47–51

  106. Voigt T (2004) Neue Methoden für den Einsatz der Informationstechnologie bei Getränkeabfüllanlagen (dissertation). Technische Universität München, Freising

    Google Scholar 

  107. Joglekar GS, Reklaitis GV (1984) A simulator for batch and semi-continuous processes. Comput Chem Eng 8(6):315–327

    Article  CAS  Google Scholar 

  108. Heilala J, Vatanen S, Tonteri H, Montonen J, Lind S, Johansson B, & Stahre J (2008). Simulation-based sustainable manufacturing system design, Proceedings of the 2008 Winter Simulation Conference, 1922–1930. https://doi.org/10.1109/WSC.2008.4736284

  109. Kummer O (2001). Introduction to petri nets and reference nets. Sozionik Aktuell, 1/2001, 7–16

  110. Kummer O. (2016). Renew - the reference net workshop. Retrieved from http://www.renew.de/. Accessed 10 May 2019

  111. Lee B, Reklaitis GV (1995) Optimal scheduling of cyclic batch processes for heat integration—I. Basic formulation. Comput Chem Eng 19(8):883–905. https://doi.org/10.1016/0098-1354(94)00091-2

    Article  Google Scholar 

  112. Murugan S, Horák B (2016) Tri and polygeneration systems - a review. Renew Sust Energ Rev 60:1032–1051. https://doi.org/10.1016/j.rser.2016.01.127

    Article  Google Scholar 

  113. Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294. https://doi.org/10.1162/neco.1989.1.2.281

    Article  Google Scholar 

  114. Linnhoff B, Flower JR (1978) Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AICHE J 24(4):633–642. https://doi.org/10.1002/aic.690240411

    Article  CAS  Google Scholar 

  115. Linnhoff B, Vredeveld DR (1984) Pinch technology has come of age. Chem Eng Prog 80(7)

  116. Landesanstalt für Umweltschutz Baden-Württemberg. (2003). Mit der Pinch-Technologie Prozesse und Anlagen optimieren: Eine Methode des betrieblichen Energie- und Stoffstrommanagements. Karlsruhe

  117. Hebecker D, Bittrich P (2001) Energy and materials conversion with the help of regeneration and energy transformation. Int J Therm Sci 40(4):316–328. https://doi.org/10.1016/S1290-0729(01)01221-2

    Article  CAS  Google Scholar 

  118. Kemp IC (2011). Pinch analysis and process integration: Elsevier Science

  119. Olsen D, Egli A, & Wellig B (2010). PinCH: an analysis tool for process industries. Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010. (1), 129–135

  120. Einstein energy - software tool. Retrieved from https://www.einstein-energy.net/index.php/software. Accessed 10 May 2019

  121. Martín Á, Mato FA (2008) Hint: an educational software for heat exchanger network design with the pinch method. Educ Chem Eng 3(1):e6–e14. https://doi.org/10.1016/j.ece.2007.08.001

    Article  Google Scholar 

  122. Puckl S. (2013). EquiTherm – Energieströme clever genutzt. Retrieved from https://blog.krones.com/blog/technologie/equitherm-energiestroeme-clever-genutzt/. Accessed 10 May 2019

  123. Becker H, Maréchal F, Vuillermoz A (2011) Process integration and opportunities for heat pumps in industrial processes. Int J Thermodyn 14:59–70

    Article  Google Scholar 

  124. Gadalla MA (2015) A new graphical method for pinch analysis applications: heat exchanger network retrofit and energy integration. Energy 81:159–174. https://doi.org/10.1016/j.energy.2014.12.011

    Article  Google Scholar 

  125. Brunner C, Muster-Slawitsch B, Heigl E, Schweiger H, Vannoni C (2010) EINSTEIN – Expert System for an Intelligent Supply of Thermal Energy in Industry - audit methodology and software tool. Chem Eng Trans 21:658–690

    Google Scholar 

  126. Zairi M (1998) Benchmarking for best practice: continuous learning through sustainable innovation, Paperback edn. Butterworth-Heinemann, Oxford

  127. Brewers Association Sustainability Committee. (2017). 2017 Sustainability benchmarking report

  128. Campbell D, Lees M (2003) Soft computing, real-time measurement and information processing in a modern brewery. In: Reznik L, Kreinovich V (eds) Studies in fuzziness and soft computing: vol. 127. Soft computing in measurement and information acquisition, 127th edn. Springer, Berlin, Heidelberg, pp 105–120. https://doi.org/10.1007/978-3-540-36216-6_8

    Chapter  Google Scholar 

  129. Kimberger J, Bär R, & Voigt T (2019). Weihenstephan standards for production data acquisition: WS brew specification of the interface content (part 2) Version 08

  130. Kather A, Haufe C, & Voigt T (2000). Weihenstephan standards for production data acquisition: WS pack specification of the interface content (part 2) Version 08

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Bär.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bär, R.M., Voigt, T. Analysis and Prediction Methods for Energy Efficiency and Media Demand in the Beverage Industry. Food Eng Rev 11, 200–217 (2019). https://doi.org/10.1007/s12393-019-09195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-019-09195-y

Keywords

Navigation