Skip to main content
Log in

Biocontrol capabilities of the genus Serratia

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review focuses on the production of natural bioactive products and their biocontrol capabilities of the enterobacterial genus Serratia. Serratia represents a unique group of enterobacteria with a notable secondary metabolism, able to produce a wide range of natural bioactive products including the β-lactam antibiotic carbapenem or the antifungal compound oocydin A. However, until very recently, most of the Serratia isolates originated from human and animal infections, and a systematic approach to the isolation of Serratia from natural habitats has been missing. The paucity of environmental isolates has so far limited our understanding of the potential of Serratia to produce new natural bioactive products and their capacity to be used in sustainable agriculture as biocontrol agents. The ability to isolate Serratia from soils, together with the analytical capabilities afforded by the democratization of genome sequencing methodologies, opens the door to the isolation and characterization of such novel biocontrol agents, hitherto inaccessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcoforado Diniz J, Liu Y, Coulthurst S (2015) Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol 17(12):1742–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alström S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149(2):57–64

    Google Scholar 

  • Bale J, van Lenteren J, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc Lond B Biol Sci 363(1492):761–776

    CAS  PubMed  Google Scholar 

  • Baltz R (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8(5):557–563

    CAS  PubMed  Google Scholar 

  • Bar-Ness R, Avrahamy N, Matsuyama T et al (1989) Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol 170(9):4361–4364

    Google Scholar 

  • Bennett J, Bentley R (2000) Seeing red: the story of prodigiosin. Adv Appl Microbiol 47:1–32

    CAS  PubMed  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65(8):385–395

    PubMed  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88(6):952–960

    CAS  PubMed  Google Scholar 

  • Bizio B (1823) Lettera di Bartolomeo Bizio al chiarissimo canonico Angelo Bellani sopra il fenomeno della polenta porporina. Biblioteca Italiana o sia Giornale di Letteratura, Scienze e Arti (Anno VIII)

  • Burns D, Cundliffe E (1973) Bacterial-protein synthesis. A novel system for studying antibiotic action in vivo. Eur J Biochem 37(3):570–574

    CAS  PubMed  Google Scholar 

  • Clements T, Ndlovu T, Khan S, Khan W (2019) Biosurfactants produced by Serratia species: classification, biosynthesis, production and application. Appl Microbiol Biotechnol 103(2):589–602

    CAS  PubMed  Google Scholar 

  • Czárán T, Hoekstra R, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99(2):786–790

    PubMed  Google Scholar 

  • Danevčič T, Borić Vezjak M, Tabor M et al (2016) Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol 7:27

    PubMed  PubMed Central  Google Scholar 

  • Demain A (1995) Why do microorganisms produce antimicrobials? In: Hunter PA, Darby GK, Russell NJ (eds) Fifty years of antimicrobials: past perspectives and future trens (Society for General Microbiology Symposium no. 53). Cambridge University Press, Cambridge

    Google Scholar 

  • Dizman B, Elasri MO, Mathias LJ (2005) Synthesis, characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin. Biomacromolecules 6(1):514–520

    CAS  PubMed  Google Scholar 

  • Domik D, Magnus N, Piechulla B (2016a) Analysis of a new cluster of genes involved in the synthesis of the unique volatile organic compound sodorifen of Serratia plymuthica 4Rx13. FEMS Microbiol Lett 363(14):fnw139

    PubMed  Google Scholar 

  • Domik D, Thurmer A, Weise T et al (2016b) A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13. Front Microbiol 7:737

    PubMed  PubMed Central  Google Scholar 

  • Dusane D, Pawar V, Nancharaiah Y et al (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27(6):645–654

    CAS  PubMed  Google Scholar 

  • Effmert U, Kalderas J, Warnke R et al (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    CAS  PubMed  Google Scholar 

  • Eisenstein I (1990) Enterobacteriaceae. In: Mandell GL, Douglas RG, Bennett JE (eds) Principles and practice of infectious disease, 3rd edn. Churchill Livingstone, New York

    Google Scholar 

  • Escobar-Díaz E, López-Martín E, Hernández del Cerro M et al (2005) AT514, a cyclic depsipeptide from Serratia marcescens, induces apoptosis of B-chronic lymphocytic leukemia cells: interference with the Akt/NF-kappaB survival pathway. Leukemia 19(4):572–579

    PubMed  Google Scholar 

  • Espona-Fiedler M, Soto-Cerrato V, Hosseini A et al (2012) Identification of dual mTORC1 and mTORC2 inhibitors in melanoma cells: prodigiosin vs. obatoclax. Biochem Pharmacol 83(4):489–496

    CAS  PubMed  Google Scholar 

  • Fujimoto H, Kinoshita T, Suzuki H et al (1970) Studies on the mode of action of althiomycin. J Antibiot 23(6):271–275

    CAS  PubMed  Google Scholar 

  • Fürnkranz M, Adam E, Müller H et al (2012) Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 134(3):509–519

    Google Scholar 

  • Garding A, Bhattacharya N, Claus R et al (2013) Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet 9(4):e1003373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerc A, Song L, Challis G et al (2012) The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin. PLoS ONE 7(9):e44673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerc A, Stanley-Wall N, Coulthurst S (2014) Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Microbiology 160(Pt 8):1609–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimont P, Grimont F (2004) Genus Serratia Bizio 1823, 288AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Grosch R, Faltin F, Lottmann J et al (2005) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kuhn on lettuce and potato. Can J Microbiol 51(4):345–353

    CAS  PubMed  Google Scholar 

  • Gulani C, Bhattacharya S, Das A (2012) Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malays J Microbiol 8(2):116–122

    CAS  Google Scholar 

  • Harris A, Williamson N, Slater H et al (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150(Pt 11):3547–3560

    CAS  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    CAS  PubMed  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48(26):4688–4716

    CAS  PubMed  Google Scholar 

  • Hibbing M, Fuqua C, Parsek M et al (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh H, Shieh J, Chen C et al (2012) Prodigiosin down-regulates SKP2 to induce p27(KIP1) stabilization and antiproliferation in human lung adenocarcinoma cells. Br J Pharmacol 166(7):2095–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim D, Nazari T, Kassim J et al (2014) Prodigiosin—an antibacterial red pigment produced by Serratia marcescens IBRL USM 84 associated with a marine sponge Xestospongia testudinaria. J Appl Pharm Sci 4(10):1–6

    CAS  Google Scholar 

  • Jeong H, Yim J, Lee C et al (2005) Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33(22):7066–7073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson J, Paul L, Finlay R (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13

    CAS  PubMed  Google Scholar 

  • Kadouri D, Shanks R (2013) Identification of a methicillin-resistant Staphylococcus aureus inhibitory compound isolated from Serratia marcescens. Res Microbiol 164(8):821–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Effmert U, Berg G et al (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187(5):351–360

    CAS  PubMed  Google Scholar 

  • Kai M, Crespo E, Cristescu S et al (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88(4):965–976

    CAS  PubMed  Google Scholar 

  • Kawauchi K, Shibutani K, Yagisawa H et al (1997) A possible immunosuppressant, cycloprodigiosin hydrochloride, obtained from Pseudoalteromonas denitrificans. Biochem Biophys Res Commun 237(3):543–547

    CAS  PubMed  Google Scholar 

  • Kurze S, Bahl H, Dahl R et al (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85(5):529–534

    PubMed  Google Scholar 

  • Lai S, Tremblay J, Déziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11(1):126–136

    CAS  PubMed  Google Scholar 

  • Lambert M, Jean-Luc W, Stærk D et al (2007) Identification of natural products using HPLC-SPE combined with CapNMR. Anal Chem 79(2):727–735

    CAS  PubMed  Google Scholar 

  • Lapenda J, Silva P, Vicalvi M et al (2015) Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J Microbiol Biotechnol 31(2):399–406

    CAS  PubMed  Google Scholar 

  • Lavania M, Chauhan P, Chauhan S et al (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52(5):363–368

    CAS  PubMed  Google Scholar 

  • Li R, Stapon A, Blanchfield J et al (2000) Three unusual reactions mediate carbapenem and carbapenam biosynthesis. J Am Chem Soc 122(38):9296–9297

    CAS  Google Scholar 

  • Lu C, Lin S, Yang S et al (2012) Prodigiosin-induced cytotoxicity involves RAD51 down-regulation through the JNK and p38 MAPK pathways in human breast carcinoma cell lines. Toxicol Lett 212(1):83–89

    CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X et al (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466

    CAS  PubMed  Google Scholar 

  • Matilla M, Stockmann H, Leeper F et al (2012) Bacterial biosynthetic gene clusters encoding the anti-cancer haterumalide class of molecules: biogenesis of the broad spectrum antifungal and anti-oomycete compound, oocydin A. J Biol Chem 287(46):39125–39138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matilla M, Leeper F, Salmond G (2015) Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 17(8):2993–3008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuyama T, Fujita M, Yano I (1985) Wetting agent produced by Serratia marcescens. FEMS Microbiol Lett 28(1):125–129

    CAS  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M et al (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865–875

    CAS  Google Scholar 

  • Matsuyama T, Sogawa M, Nakagawa Y (1989) Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol Lett 52(3):243–246

    CAS  PubMed  Google Scholar 

  • Matsuyama T, Kaneda K, Ishizuka I et al (1990) Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J Bacteriol 172(6):3015–3022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuyama T, Kaneda K, Nakagawa Y et al (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174(6):1769–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuyama T, Tanikawa T, Nakagawa Y (2011) Serrawettins and other surfactants produced by Serratia. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications. Springer, Berlin, pp 93–120

    Google Scholar 

  • McGowan S, Sebaihia M, Jones S et al (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141(Pt 3):541–550

    CAS  PubMed  Google Scholar 

  • McGowan S, Sebaihia M, Porter L et al (1996) Analysis of bacterial carbapenem antibiotic production genes reveals a novel β-lactam biosynthesis pathway. Mol Microbiol 22(3):415–426

    CAS  PubMed  Google Scholar 

  • McGowan S, Bycroft B, Salmond G (1998) Bacterial production of carbapenems and clavams: evolution of beta-lactam antibiotic pathways. Trends Microbiol 6(5):203–208

    CAS  PubMed  Google Scholar 

  • Moellering R, Eliopoulos G, Sentochnik D (1989) The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother 24(Suppl A):1–7

    CAS  PubMed  Google Scholar 

  • Müller H, Westendorf C, Leitner E et al (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67(3):468–478

    PubMed  Google Scholar 

  • Müller H, Fürnkranz M, Grube M et al (2013) Genome sequence of Serratia plymuthica Strain S13, an endophyte with germination- and plant-growth-promoting activity from the flower of styrian oil pumpkin. Genome Announc 1(4):e00594-13

    PubMed  PubMed Central  Google Scholar 

  • Murdoch S, Trunk K, English G et al (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193(21):6057–6069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238

    CAS  PubMed  Google Scholar 

  • Newman D, Cragg G (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    CAS  PubMed  Google Scholar 

  • Nishida M, Mine Y, Nonoyama S et al (1977) Nocardicin A, a new monocyclic beta-lactam antibiotic III. In vitro evaluation. J Antibiot 30(11):917–925

    CAS  PubMed  Google Scholar 

  • Niveshika E, Mishra A, Singh A et al (2016) Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostoc sp. MGL001. Front Microbiol 7:1899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Overhage J, Bains M, Brazas M et al (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190(8):2671–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Tomás R, Montaner B, Llagostera E et al (2003) The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol 66(8):1447–1452

    PubMed  Google Scholar 

  • Perry J (1961) Prodigiosin in an actionomycete. Nature 191:77–78

    CAS  PubMed  Google Scholar 

  • Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27(7):996–1047

    CAS  PubMed  Google Scholar 

  • Pradel E, Zhang Y, Pujol N et al (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 104(7):2295–2300

    CAS  PubMed  Google Scholar 

  • Schmidt R, Jager V, Zuhlke D et al (2017) Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci Rep 7(1):862

    PubMed  PubMed Central  Google Scholar 

  • Singh R, Jha P (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11(6):e0155026

    PubMed  PubMed Central  Google Scholar 

  • Slater H, Crow M, Everson L et al (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47(2):303–320

    CAS  PubMed  Google Scholar 

  • Soberón-Chávez G, Maier R (2011) Biosurfactants: a general overview. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications. Springer, Berlin, pp 1–11

    Google Scholar 

  • Soenens A (2018) Characterisation of non-symbiotic rhizobial and Serratia populations from soil. PhD Thesis, Universidad Politécnica de Madrid. https://www.educacion.es/teseo/mostrarRef.do?ref=1664382

  • Solé M, Rius N, Francia A et al (1994) The effect of pH on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett Appl Microbiol 19(5):341–344

    PubMed  Google Scholar 

  • Soo P, Horng Y, Chang Y et al (2014) ManA is regulated by RssAB signaling and promotes motility in Serratia marcescens. Res Microbiol 165(1):21–29

    CAS  PubMed  Google Scholar 

  • Soto-Cerrato V, Montaner B, Martinell M et al (2005) Cell cycle arrest and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells. Biochem Pharmacol 71(1–2):32–41

    CAS  PubMed  Google Scholar 

  • Srobel G, Li JY, Sugawara F et al (1999) Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology 145(12):3557–3564

    Google Scholar 

  • Stankovic N, Senerovic L, Ilic-Tomic T et al (2014) Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol 98(9):3841–3858

    CAS  PubMed  Google Scholar 

  • Su C, Xiang Z, Liu Y et al (2016) Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25. BMC Genom 17(1):865

    Google Scholar 

  • Sun X, Shen X, Jain R et al (2015) Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev 44(11):3760–3785

    CAS  PubMed  Google Scholar 

  • Suryawanshi R, Patil C, Koli S et al (2017) Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat Prod Res 31(5):572–577

    CAS  PubMed  Google Scholar 

  • Talarico T, Dobrogosz W (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33(5):674–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanikawa T, Nakagawa Y, Matsuyama T (2006) Transcriptional downregulator hexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 50(8):587–596

    CAS  PubMed  Google Scholar 

  • Thomson N, Crow M, McGowan S et al (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    CAS  PubMed  Google Scholar 

  • Till M, Race P (2014) Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases. Biotechnol Lett 36(5):877–888

    CAS  PubMed  Google Scholar 

  • Trunk K, Peltier J, Liu Y et al (2018) The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3(8):920–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varivarn K, Champa L, Silby M et al (2013) Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol 13:92

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Reuss S, Kai M, Piechulla B et al (2010) Octamethylbicyclo[3.2.1]octadienes from the rhizobacterium Serratia odorifera. Angew Chem Int Ed Engl 49(11):2009–2010

    Google Scholar 

  • Wasserman H, Keggi J, McKeon J (1961) Serratamolide, a metabolic product of Serratia. J Am Chem Soc 83(19):4107–4108

    CAS  Google Scholar 

  • Wasserman H, Keggi J, McKeon J (1962) The Structure of Serratamolide1-3. J Am Chem Soc 84(15):2978–2982

    CAS  Google Scholar 

  • Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weise T, Thurmer A, Brady S et al (2014) VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol Lett 352(1):45–53

    CAS  PubMed  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231(3):499–506

    CAS  PubMed  Google Scholar 

  • Wenke K, Weise T, Warnke R et al (2012) Bacterial volatiles mediating information between bacteria and plants. In: Witzany G, Baluška F (eds) Biocommunication of plants. Springer, Berlin, pp 327–347

    Google Scholar 

  • Williams R (1973) Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens. Appl Microbiol 25(3):396–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams R, Qadri S (1980) The pigment of Serratia. In: von Graevenitz A, Rubin SJ (eds) The genus serratia. CRC Press, Boca Raton

    Google Scholar 

  • Williams R, Gott C, Qadri S (1971) Induction of pigmentation in nonproliferating cells of Serratia marcescens by addition of single amino acids. J Bacteriol 106(2):444–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Nakayama Y, Takeda K et al (1957) A new antibiotic, althiomycin. J Antibiot 10(5):195–200

    CAS  PubMed  Google Scholar 

  • Yusof NZ (2008) Isolation and applications of red pigment from Serratia marcescens. B Sc Thesis, Universiti Teknologi Malaysia, Johor Bahru

Download references

Acknowledgements

We thank George P. C Salmond and Rita Monson from the Biochemistry Department at the University of Cambridge for their help and support in the Serratia phenotypic experiments and for all their knowledge sharing in conducting such experiments. AS is also grateful to the Consejo Social of the Universidad Politécnica de Madrid for a scholarship for Internationalization of Ph.D. students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Imperial.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soenens, A., Imperial, J. Biocontrol capabilities of the genus Serratia. Phytochem Rev 19, 577–587 (2020). https://doi.org/10.1007/s11101-019-09657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09657-5

Keywords

Navigation