Skip to main content
Log in

Mexican copalchis of the Rubiaceae family: more than a century of pharmacological and chemical investigations

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The term copalchi has been used in the scientific literature to define a group of plants of the Rubiaceae and Euphorbiaceae families with extremely bitter stem-barks, useful for treating diabetes and malaria. In this review we summarized the most relevant chemical and pharmacological works carried out in the last century with the copalchis of the Rubiaceae family, namely Hintonia latiflora, H. standleyana and Exostema caribaeum. Their major components are 4-phenylcoumarins 5,7,3′,4′- or 5,7,4′-substituted with oxygenated functionalities, with the former having the most common pattern. These along with a few cucurbitacins are responsible for the antidiabetic properties of both Hintonia species. E. caribaeum contained mostly 4-phenylcoumarins, which apparently are the antimalarial constituents of these plants. Toxicological reports on these plants are discussed. The quality control procedures (chromatographic and molecular) developed for the three species are summarized. These will be valuable for their unequivocal identification, which in turn will avoid their partial adulteration or substitution. Future studies are required to solve the puzzle around the toxicity of the copalchis and for better understanding their pharmacological actions. Finally, establishment of their metabolomics profiles will provide a better knowledge of their secondary metabolism and help map their biosynthesis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

AMPK 5′:

Adenosine monophosphate-activated protein kinase

CD1 (ICR):

Institute of Cancer Research male mice

CM:

Commercial mixture of copalchi

COSY:

Homonuclear single-quantum correlation spectroscopy

DNA:

Deoxyribonucleic acid

FABMS:

Fast atom bombardment mass spectrometry

HbA1c:

Glycosylated hemoglobin

HMBC:

Heteronuclear multiple bond correlation spectroscopy

HPLC:

High-performance liquid chromatography

HSQC:

Heteronuclear single-quantum correlation spectroscopy

IMN:

Instituto Médico Nacional

IR:

Infrared spectroscopy

ITS2 :

Internal transcribed spacer 2

l-NAME:

l-N-Nitroarginine methyl ester

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

NP-SH:

Non-protein sulfhydryl endogenous

psbA-trnH :

Internal transcribed spacer between the psbA and trnH chloroplast genes

rbcL:

Ribulose bisphosphate carboxylase large

rpl32-trnL :

Internal transcribed spacer between ribosomal protein L32 and tRNA-Leu chloroplast genes

TLC:

Thin-layer chromatography

TII-DM:

Type II diabetes mellitus

UPLC:

Ultra-high-performance liquid chromatography

UV:

Ultraviolet spectroscopy

References

  • Alarcón-Aguilar FA, Román-Ramos R (2006) Antidiabetic plants in Mexican and Central American Medicine. In: Soumyanath A (ed) Traditional medicines for modern times: antidiabetic plants, 1st edn. CRC Press, Boca Raton, pp 179–194

    Google Scholar 

  • Anaya Dávila GMI (1991) Estudio etnobotánico del complejo quina en México. Dissertation, Universidad Nacional Autónoma de México

  • Andrade-Cetto A, Heinrich M (2005) Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 99:325–348

    Google Scholar 

  • Antih J (2018) Flore médicinale d’Amérique latine dans la médecine européenne: étude d’une sélection de plantes décrites entre le XVIème et le XVIIIème siècle. Dissertation, Université de Lorraine

  • Arévalo R (1897) Estudio sobre la corteza de Copalchi. In: Cortina CG (ed) Nueva recopilación de Monografías Mexicanas y Tesis Inaugurales de Materia Médica, vol 2. Oficina Tipográfica de la Secretaría de Fomento, Mexico City, pp 66–70

    Google Scholar 

  • Argotte-Ramos R, Ramírez-Avila G, Rodríguez-Gutiérrez MDC, Ovilla-Muñoz M, Lanz-Mendoza H, Rodríguez MH, González-Cortazar M, Alvarez L (2006) Antimalarial 4-phenylcoumarins from the stem bark of Hintonia latiflora. J Nat Prod 69:442–444

    Google Scholar 

  • Argueta AV, Cano LM, Rodarte ME (eds) (1994) Atlas de las plantas de la medicina tradicional Mexicana. Instituto Nacional Indigenista, Mexico City, p 1786

    Google Scholar 

  • Beametz D, Egasse E (1889) Les Plantes médicinales indigènes et exotiques, leurs usages thérapeutiques, pharmaceutiques et industriel. Doin, Paris, p 635

    Google Scholar 

  • Beltrán-Rodríguez L, Manzo-Ramos F, Martínez-Ballesté A, Blancas J, Maldonado-Almanza B (2017) Wild medicinal species traded in the Balsas Basin, Mexico: risk analysis and recommendations for their conservation. J Ethnobiol 37:743–764

    Google Scholar 

  • Bhanu S, Saroja T, Seshadri TR, Mukerjee SK (1972) Conversion of 4-phenylcoumarins into xanthones. Biogenetic implications. Indian J Chem 10:577–580

    CAS  Google Scholar 

  • Borhidi A (2012) Rubiáceas de México, 2nd edn. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Borhidi A, Diego-Pérez N (2002) Introducción a la taxonomía de la familia Rubiaceae en la flora de México. Acta Bot Hung 44:237–280

    Google Scholar 

  • Bremer B, Andreasen K, Olsson D (1995) Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. Ann Missouri Bot Gard 82:383–397

    Google Scholar 

  • Bruguera M, Herrera S, Lázaro E, Madurga M, Navarro M, De Abajo FJ (2007) Hepatitis aguda asociada al consumo de Copalchi. A propósito de 5 casos. Gastroenterol Hepatol 30:66–68

    PubMed  Google Scholar 

  • Bye R, Linares E (2016) Traditional markets in Mesoamerica: a mosaic of history and traditions. In: Lira R, Casas A, Blancas J (eds) Ethnobotany of Mexico, 1st edn. Springer, New York, pp 151–178

    Google Scholar 

  • Capasso F (1993) Toxikologisches Gutachten uber Sucontral®. Universitat Neapel, Naples

    Google Scholar 

  • Castillejos-Ramirez EV (2013) Pruebas de composición e identidad de la droga cruda Exostema caribaeum (Rubiaceae). Dissertation, Universidad Nacional Autónoma de México

  • Cristians S, Guerrero-Analco JA, Pérez-Vásquez A, Palacios-Espinosa F, Ciangherotti C, Bye R, Mata R (2009) Hypoglycemic activity of extracts and compounds from the leaves of Hintonia standleyana and H. latiflora: potential alternatives to the use of the stem bark of these species. J Nat Prod 72:408–413

    CAS  PubMed  Google Scholar 

  • Cristians S, Bye R, Navarrete A, Mata R (2013) Gastroprotective effect of Hintonia latiflora and Hintonia standleyana aqueous extracts and compounds. J Ethnopharmacol 145:530–535

    CAS  PubMed  Google Scholar 

  • Cristians S, Bye R, Nieto-Sotelo J (2018) Molecular markers associated with chemical analysis: a powerful tool for quality control assessment of copalchi medicinal plant complex. Front Pharmacol 9:1–12

    Google Scholar 

  • De Lanessan JL (1886) Les Plantes utiles des colonies françaises, ouvrage publié sous la direction. Imprimerie nationale, Paris, p 990

    Google Scholar 

  • Déciga-Campos M, Guerrero-Analco JA, Quijano L, Mata R (2006) Antinociceptive activity of 3-O-β-d-glucopyranosyl-23,24-dihydrocucurbitacin F from Hintonia standleyana (Rubiaceae). Pharmacol Biochem Behav 83:334–342

    Google Scholar 

  • Déciga-Campos M, Rivero-Cruz I, Arriaga-Alba M, Castañeda-Corral G, Angeles-López GE, Navarrete A, Mata R (2007) Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J Ethnopharmacol 110:334–342

    PubMed  Google Scholar 

  • Dibble CE, Anderson AJO (1963) History of the things of new Spain: Book 11, earthly things. The University of Utah, Salt Lake City, p 613

    Google Scholar 

  • Farmacopea Herbolaria de los Estados Unidos Mexicanos (FHEUM) (2013) Secretaría de Salud, 2nd edn. Mexico City, p 193

  • Flores-Jiménez N, Rojas-Lemus M, Fortoul TI, Zepeda-Rodríguez A, López-Camacho PY, Anacleto-Santos J, Malagón-Gutiérrez F, Basurto-Islas G, Rivera-Fernández N (2018) Histopathological alterations in mice under sub-acute treatment with Hintonia latiflora methanolic stem bark extract. Histol Histopathol 33:1299–1309

    PubMed  Google Scholar 

  • Garcia M (2010) A folk remedy for NIDDM: evidence of antihyperglycemic effects of H. latiflora. California Digital Library, UCLA, California, pp 1–11

  • Guerrero-Analco JA (2007) Compuestos antihiperglicémicos y antinociceptivos de la especie Hintonia standleyana Bullock (Rubiaceae). Una contribución a la determinación de los parámetros de inocuidad, calidad y eficacia de la droga cruda. Dissertation, Universidad Nacional Autónoma de México

  • Guerrero-Analco JA, Hersch-Martínez P, Pedraza-Chaverri J, Navarrete A, Mata R (2005) Antihyperglycemic effect of constituents from Hintonia standleyana in streptozotocin-induced diabetic rats. Planta Med 71:1099–1105

    CAS  PubMed  Google Scholar 

  • Guerrero-Analco J, Medina-Campos O, Brindis F, Bye R, Pedraza-Chaverri J, Navarrete A, Mata R (2007) Antidiabetic properties of selected Mexican copalchis of the Rubiaceae family. Phytochemistry 68:2087–2095

    CAS  PubMed  Google Scholar 

  • Heinrich M, Anagnostou S (2017) From pharmacognosia to DNA-based medicinal plant authentication-pharmacognosy through the centuries. Planta Med 83:1110–1116

    CAS  PubMed  Google Scholar 

  • Hernández F (1943) Historia de las plantas de Nueva España, Instituto de Biología, Universidad Nacional Autónoma de México, vol 2. Imprenta Universitaria, Mexico City (Books 3 and 4)

    Google Scholar 

  • Hersch P (2008) La industrialización químico-farmacéutica mexicana y la flora: el caso de laboratorios Garcol. Bol Soc Quim Mex 1:5–12

    Google Scholar 

  • Ivanova NV, Kuzmina ML, Braukmann TWA, Borisenko AV, Zakharov EV (2016) Authentication of herbal supplements using next-generation sequencing. PLoS ONE 11:1–24

    Google Scholar 

  • Kaiser H, Geyer H (1955) Zur Pharmakologie der Rinde von Coutarea latiflora D.C. Arch Pharm 288:595–608

    CAS  Google Scholar 

  • Korec R, Sensch KH, Zoukas T (2000) Effects of the neoflavonoid coutareagenin, one of the antidiabetic active substances of Hintonia latiflora, on streptozotocin-induced diabetes mellitus in rats. Drug Res 50:122–128

    CAS  Google Scholar 

  • Korecova M, Hladikova M (2014) Treatment of mild and moderate type-2 diabetes: open prospective trial with Hintonia latiflora extract. Eur J Med Res 19:16

    PubMed  PubMed Central  Google Scholar 

  • Korecova M, Hladícova M, Korec R (2006) Hintonia latiflora in type 2 diabetes-A clinical long-term study [Hintonia latiflora bei typ-2-diabetes. Klinische langzeitstudie]. Z Phytother 27:272–278

    Google Scholar 

  • Landa E (1913) Estudio del Copalchi de Jojutla (Coutarea latiflora). Anales del Instituto Medico Nacional 12:146–158

    Google Scholar 

  • Linares E, Bye R (1987) A study of four medicinal plants complexes of Mexico and adjacent United States. J Ethnopharmacol 19:153–183

    CAS  PubMed  Google Scholar 

  • Loaeza A (1907) Informes de trabajos realizados del mes de enero al mes de noviembre de 1907. Anales del Instituto Medico Nacional 9(178):246

    Google Scholar 

  • Loaeza A (1908) Informes de trabajos realizados del mes de enero al mes de junio de 1908. Anales del Instituto Medico Nacional 10:154–155

    Google Scholar 

  • Martínez-Pérez A, López PA, Gil-Muñoz A, Cuevas-Sánchez JA (2012) Plantas silvestres útiles y prioritarias identificadas en la Mixteca Poblana, México. Acta Botanica Mexicana 98:73–98

    Google Scholar 

  • Mata R, Calzada F, García MR, Reguero MT (1987) Chemical studies on Mexican plants used in traditional medicine, III. New 4-phenylcoumarins from Exostema caribaeum. J Nat Prod 50:866–871

    CAS  PubMed  Google Scholar 

  • Mata R, Calzada F, García MR (1988) Chemical studies on Mexican plants used in traditional medicine, IV. Additional 4-phenylcoumarins from Exostema caribaeum. J Nat Prod 51:851–856

    CAS  PubMed  Google Scholar 

  • Mata R, Del Rayo Camacho M, Cervera E, Bye R, Linares E (1990) Secondary metabolites from Hintonia latiflora. Phytochemistry 29:2037–2040

    CAS  Google Scholar 

  • Mata R, Del Rayo Camacho M, Mendoza S, Del Carmen Cruz M (1992) A phenylstyrene from Hintonia latiflora. Phytochemistry 31:3199–3201

    CAS  Google Scholar 

  • Mata R, Acevedo L, Méndez-Bautista DI, Guerrero-Analco JA, Rivero BE, Rodríguez JM (2008) Development and validation of liquid chromatography method for quantification of the active markers of Hintonia standleyana and Hintonia latiflora crude drugs. Pharm Biol 46:105–110

    CAS  Google Scholar 

  • Mata R, Navarrete A, Cristians S, Hersch P, Bye RA (2009) Copalchi. Hintonia latiflora [Sessé et Mociño ex DC.] Bullock (Rubiaceae) Pruebas de control de calidad (identidad y composición), eficacia y seguridad. In Plantas Medicinales de México. Monografía científica. Sentido Giratorio, Mexico City, p 29

  • Mata R, Cristians S, Escandón-Rivera S, Juárez-Reyes K, Rivero-Cruz I (2013) Mexican antidiabetic herbs: valuable sources of inhibitors of α-glucosidases. J Nat Prod 76:468–483

    CAS  PubMed  Google Scholar 

  • McVaugh R (2000) Botanical Results of the Sessé & Mociño Expedition (1787–1803): a guide to relevant scientific names of plants. Hunt Institute for Botanical Documentation, Pittsburgh, p 226, 463, 471

    Google Scholar 

  • Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V (2016) DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J 14:8–21

    CAS  PubMed  Google Scholar 

  • Monroy-Ortiz C, García-Moya E, Romero-Manzanares A, Sánchez-Quintanar C, Luna-Cavazos M, Uscanga-Mortera E, Flores-Guido JS, González-Romero V (2013) Plants of local interest for medicinal and conservation purposes in Morelos, Mexico. Stud Ethno-Med 7:13–26

    Google Scholar 

  • Noster S, Kraus L (1990) In vitro antimalarial activity of Coutarea latiflora and Exostema caribaeum extracts on Plasmodium falciparum. Panta Med 56:63–65

    CAS  Google Scholar 

  • Paris and Bastien (1960) Apropos of the hypoglycemic action of 2 drugs named “copalchi”: Coutarea latiflora (Rubiaceae) and Croton niveus (Euphorbiaceae). Ann Pharm Fr 18:205–219

    PubMed  Google Scholar 

  • Pérez-Vásquez A, Castillejos-Ramírez E, Cristians S, Mata R (2014) Developmet of UHPLC-PDA method for the simultaneous quantification of 4-phenylcoumarins and chlorogenic acid in Exostema caribaeum stem bark. J Nat Prod 77:516–520

    PubMed  Google Scholar 

  • Phillips SJ, Anderson R, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Mod 190:231–259

    Google Scholar 

  • Pinto A, Capasso A, Sorrentino L (1997) Experimental animal studies on the hypoglycemic effects of a Copalchi extract. Arzneim Forsch 47:829–833

    CAS  Google Scholar 

  • Raclariu AC, Heinrich M, Ichim MC, De Boer H (2018) Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem Anal 29:123–128

    CAS  PubMed  Google Scholar 

  • Reguero MT, Mata R, Bye R, Linares E, Delgado G (1987) Chemical studies on Mexican plants used in traditional medicine, II: cucurbitacins from Hintonia latiflora. J Nat Prod 50:315–316

    CAS  PubMed  Google Scholar 

  • Reher G, Kraus L (1984) New neoflavonoid from Coutarea latiflorea. J Nat Prod 47:172

    CAS  Google Scholar 

  • Reyes-García T, Maradiaga-Ceceña FS, Catalán-Heverástico C, Jiménez-Hernández J (2012) Flora Leñosa del municipio de Cocula, Guerrero, México. Polibotánica 34:21–49

    Google Scholar 

  • Rivera N, López PY, Rojas M, Fortoul TI, Reynada DY, Reyes AJ, Rivera E, Beltrán HI, Malagón F (2014) Antimalarial efficacy, cytotoxicity, and genotoxicity of methanolic stem bark extract from Hintonia latiflora in a Plasmodium yoelii yoelii lethal murine malaria model. Parasitol Res 113:1529–1536

    PubMed  Google Scholar 

  • Roca B (2003) Rhabdomyolysis and hemolysis after use of Coutarea latiflora. Am J Med 115:677

    PubMed  Google Scholar 

  • Rodriguez-Nozal R, Gonzalez-Bueno A (1995) Real Academia Médica matritense y expediciones botánicas ilustradas. Una conexión fármaco-terapéutica. Acta Hisp Med Sci Hist Illus 15:375–399

    CAS  Google Scholar 

  • Rojas A, Hernández L, Pereda-Miranda R, Mata R (1992) Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J Ethnopharmacol 35:275–283

    CAS  PubMed  Google Scholar 

  • Romero-Cerecero O, Reyes-Morales H, Aguilar-Santamaría L, Huerta-Reyes M, Tortoriello-García J (2009) Use of medicinal plants among patients with diabetes mellitus type 2 in Morelos, Mexico. B Latinoam Caribe PL 8:380–388

    Google Scholar 

  • Sahagún B (1988) Historia general de las cosas de Nueva España. Primera versión íntegra del texto castellano del manuscrito conocido como Códice Florentino. Alianza Editorial Quinto Centenario, Madrid

    Google Scholar 

  • Sánchez-Viesca F (1969) The structure of exostemin, a new 4-phenylcoumarin isolated from Exostema caribaeum. Phytocehmistry 8:1821–1823

    Google Scholar 

  • Slijepčević M, Kraus L (1997) The diabetic mouse as an experimental model for measuring the blood glucose-lowering effects of plant extracts and insulin preparations. A Therapeutic 23:47–58

    Google Scholar 

  • Stranczinger S, Szentpéteri JL, Borhidi A (2006) Sequence differentiation between some DNA regions of Hintonia latiflora and Hintonia standleyana. Acta Bot Hung 48:435–440

    CAS  Google Scholar 

  • Terrés J (1913) Estudio del complejo Copalchi de Jojutla (Coutarea latiflora). Anales del Instituto Medico Nacional 12:109

    Google Scholar 

  • Vierling C, Baumgartner CM, Bollerhey M, Erhardt WD, Stampfl A, Vierling W (2014) The vasodilating effect of a Hintonia latiflora extract with antidiabetic action. Phytomedicine 21:1582–1586

    CAS  PubMed  Google Scholar 

  • Wang B, Li N, Liu T, Sun J, Wang X (2017) Synthesis and biological evaluation of novel neoflavonoid derivatives as potential antidiabetic agents. RSC Adv 7:34448–34460

    CAS  Google Scholar 

  • Wurtz AS, Vial T, Isoard B, Saillard E (2002) Possible hepatoxicity from Copaltra, an herbal medicine. Ann Pharmacother 36:941–942

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from CONACyT A1_S_11226, DGAPA IN217516 and PAIP-UNAM 5000-9140. We like to thank Virginia Evangelista-Oliva for their technical assistance in the actual and potential distribution maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Mata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivero-Cruz, I., Cristians, S., Ovalle-Magallanes, B. et al. Mexican copalchis of the Rubiaceae family: more than a century of pharmacological and chemical investigations. Phytochem Rev 18, 1435–1455 (2019). https://doi.org/10.1007/s11101-019-09618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09618-y

Keywords

Navigation