Skip to main content
Log in

Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

For nearly eight millennia, opium poppy (Papaver somniferum) has been bred and cultivated for therapeutic purposes. The medicinal properties of the plant are conferred by specialized metabolites known as benzylisoquinoline alkaloids (BIAs), comprising the narcotic analgesics morphine and codeine, the antimicrobial agent sanguinarine, and the potential anticancer drug noscapine. In addition, naturally occurring thebaine is used for the semi-synthesis of widely prescribed pain-relievers (e.g., oxycodone and hydrocodone), valuable drugs used in the treatment of opioid addiction (i.e., naltrexone), or antidotes for opioid overdose (i.e., naloxone). The complex stereochemistry of many opiates hinders their chemical synthesis and opium poppy remains the sole commercial source of these important pharmaceuticals. For decades, opium poppy has served as a model plant for research aimed at a comprehensive understanding of BIA metabolism. Recent progress in functional genomics has enabled the discovery of a nearly complete collection of BIA biosynthetic genes, many of which are clustered in the opium poppy genome. Advances in synthetic biology have facilitated the successful reconstitution of several BIA biosynthetic pathways in heterologous hosts such as Saccharomyces cerevisiae and Escherichia coli, although the initially low production levels suggest that commercial scale-up will present additional challenges. This review provides an update of key molecular and biochemical aspects of BIA metabolism in opium poppy, including recent biosynthetic gene discoveries, genomic organization, novel BIA transporters, metabolic regulation, and major efforts in the engineering of pathways in plants and microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

2-ODD:

2-Oxoglutarate-dependent dioxygenase

4-HPAA:

4-Hydroxyphenylacetaldehyde

4′OMT:

3′-Hydroxy-N-methylcoclaurine 4′-O-methyltransferase

6OMT:

Norcoclaurine 6-O-methyltransferase

7OMT:

Reticuline 7-O-methyltransferase

AKR:

Aldo-keto reductase

AT:

Acetyltransferase

AT1:

1,13-Dihydroxy-N-methylcanadine 13-O-acetyltransferase

ATR:

Arabidopsis thaliana P450 reductase

BBE:

Berberine bridge enzyme

BIA:

Benzylisoquinoline alkaloid

BUP:

BIA uptake permease

CAS:

Canadine synthase

Cas9:

CRISPR-associated protein 9

CFS:

Cheilanthifoline synthase

CNMT:

Coclaurine N-methyltransferase

CODM:

Codeine O-demethylase

COR:

Codeinone reductase

CPR:

Cytochrome P450 reductase

CRISPR:

Clustered regularly interspaced short palindromic repeats

CTS:

Corytuberine synthase

CXE:

Carboxylesterase

CXE1:

3-O-acetylpapaveroxine carboxylesterase

CYP:

Cytochrome P450

CYP2D6:

Human cytochrome P450

CYP76AD1:

Tyrosine hydroxylase double mutant W13L F309L

CYP82X1:

1-Hydroxy-13-O-acetyl-N-methylcanadine 8-hydroxylase

CYP82X2:

1-Hydroxy-N-methylcanadine 13-O-hydroxylase

CYP82Y1:

N-methylcanadine 1-hydroxylase

DBOX:

Dihydrobenzophenanthridine oxidase

DHFR:

Dihydrofolate reductase

DODC:

l-DOPA-specific decarboxylase

DOPA:

l-3,4-Dihydroxyphenylalanine

ER:

Endoplasmic reticulum

FADOX:

Flavin adenine dinucleotide-linked oxidoreductase

HPLC:

High performance liquid chromatography

MAO:

Monoamine oxidase

morB:

Morphinone reductase

MS:

Mass spectrometry

MSH:

N-methylstylopine 14-hydroxylase

MT:

Methyltransferase

N7OMT:

Norreticuline 7-O-methyltransferase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NCS:

Norcoclaurine synthase

NISO:

Neopinone isomerase

NLDS:

Norlaudanosoline

NMCH:

N-methylcoclaurine 3′-hydroxylase

NOS:

Noscapine synthase

OMT:

O-methyltransferase

OMT2:OMT3:

4′-O-desmethyl-3-O-acetylpapaveroxine 4′-O-methyltransferase

P6H:

Protopine 6-hydroxylase

P7ODM:

Papaverine 7-O-demethylase

PCD:

Pterin-4-alpha-carbinolamine dehydratase

PR10:

Pathogenesis-related 10 protein

PTPS:

6-Pyruvoyltetrahydropterin synthase

QDHPR:

Quinonoid dihydropteridine reductase

REPI:

Reticuline epimerase

RNAi:

RNA interference

RNMT:

Reticuline N-methyltransferase

SalAT:

Salutaridinol 7-O-acetyltransferase

SalR:

Salutaridine reductase

SalSyn:

Salutaridine synthase

SanR:

Sanguinarine reductase

SDR:

Short-chain dehydrogenases/reductase

SDR-DRR:

1,2-Dehydroreticuline synthase-1,2-dehydroreticuline reductase

SepR:

Sepiapterin reductase

SOMT:

Scoulerine 9-O-methyltransferase

SPS:

Stylopine synthase

STORR:

S to R Reticuline

STOX:

Tetrahydroprotoberberine oxidase

T6ODM:

Thebaine 6-O-demethylase

TF:

Transcription factor

THS:

Thebaine synthase

TNMT:

Tetrahydroprotoberberine N-methyltransferase

TYDC:

Tyrosine decarboxylase

TYR:

Tyrosinase

TyrAT:

Tyrosine aminotransferase

TyrHM :

Feedback inhibition-resistant tyrosine hydroxylase triple mutant R37E R38E W166Y

VIGS:

Virus-induced gene silencing

References

  • Agarwal P, Pathak S, Lakhwani D et al (2016) Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis. Protoplasma 253(3):857–871

    CAS  PubMed  Google Scholar 

  • Agarwal P, Pathak S, Kumar RS et al (2019) 3′-O-methyltransferase, Ps3′OMT, from opium poppy: involvement in papaverine biosynthesis. Plant Cell Rep. https://doi.org/10.1007/s00299-019-02439-5

    Article  PubMed  Google Scholar 

  • Alagoz Y, Gurkok T, Zhang B et al (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcantara J, Bird DA, Franceschi VR et al (2005) Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Plant Physiol 138(1):173–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA et al (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22(12):1559–1566

    CAS  PubMed  Google Scholar 

  • Allen RS, Miller JA, Chitty JA et al (2008) Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy. Plant Biotechnol J 6(1):22–30

    CAS  PubMed  Google Scholar 

  • Battersby AR (1992) Probing nature’s pathway to alkaloids. Curr Contents 42:10

    Google Scholar 

  • Beaudoin GA (2015) Characterization of oxidative enzymes involved in the biosynthesis of benzylisoquinoline alkaloids in opium poppy (Papaver somniferum). Dissertation, University of Calgary

  • Beaudoin GA, Facchini PJ (2013) Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochem Biophys Res Commun 431(3):597–603

    CAS  PubMed  Google Scholar 

  • Beaudoin GA, Facchini PJ (2014) Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240(1):19–32

    CAS  PubMed  Google Scholar 

  • Bennett MR, Thompson ML, Shepherd SA et al (2018) Structure and biocatalytic scope of coclaurine N-methyltransferase. Angew Chem Int Ed Engl 57(33):10600–10604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15(11):2626–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boke H, Ozhuner E, Turktas M et al (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 13(3):409–420

    CAS  PubMed  Google Scholar 

  • Bourgeois L, Pyne ME, Martin VJJ (2018) A highly characterized synthetic landing pad system for precise multicopy gene integration in yeast. ACS Synth Biol 7(11):2675–2685

    CAS  PubMed  Google Scholar 

  • Brook K, Bennett J, Desai SP (2017) The chemical history of morphine: an 8000-year journey, from resin to de-novo synthesis. J Anesth Hist 3(2):50–55

    PubMed  Google Scholar 

  • Chang L, Hagel JM, Facchini PJ (2015) Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum. Plant Physiol 169(2):1127–1140

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Facchini PJ (2014) Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant J 77(2):173–184

    PubMed  Google Scholar 

  • Chen X, Dang TT, Facchini PJ (2015) Noscapine comes of age. Phytochemistry 111:7–13

    CAS  PubMed  Google Scholar 

  • Chen X, Hagel JM, Chang L et al (2018) A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nat Chem Biol 14(7):738–743

    CAS  PubMed  Google Scholar 

  • Cotterill P (2013). Method of altering the alkaloid composition in poppy plants. International patent. WO/2005/107436

  • Dang TT, Facchini PJ (2012) Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol 159(2):618–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang TT, Facchini PJ (2014a) Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Lett 588(1):198–204

    CAS  PubMed  Google Scholar 

  • Dang TT, Facchini PJ (2014b) CYP82Y1 is N-methylcanadine 1-hydroxylase, a key noscapine biosynthetic enzyme in opium poppy. J Biol Chem 289(4):2013–2026

    CAS  PubMed  Google Scholar 

  • Dang TT, Chen X, Facchini PJ (2015) Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat Chem Biol 11(2):104–106

    CAS  PubMed  Google Scholar 

  • Dastmalchi M, Chang L, Torres MA et al (2018a) Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy. Plant J. https://doi.org/10.1111/tpj.13975

    Article  PubMed  Google Scholar 

  • Dastmalchi M, Park MR, Morris JS et al (2018b) Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity. Phytochem Rev 17:249–277

    CAS  Google Scholar 

  • Dastmalchi M, Chen X, Hagel JM et al (2019a) Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat Chem Biol 15(4):384–390

    CAS  PubMed  Google Scholar 

  • Dastmalchi M, Chang L, Chen R et al (2019b) Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy. Plant Physiol 181(3):916–933

    PubMed  PubMed Central  Google Scholar 

  • DeLoache WC, Russ ZN, Narcross L et al (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11(7):465–471

    CAS  PubMed  Google Scholar 

  • Desgagne-Penix I, Facchini PJ (2012) Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J 72(2):331–344

    CAS  PubMed  Google Scholar 

  • Diamond A, Desgagne-Penix I (2016) Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol J 14(6):1319–1328

    CAS  PubMed  Google Scholar 

  • Dinis-Oliveira RJ (2019) Metabolism and metabolomics of opiates: a long way of forensic implications to unravel. J Forensic Leg Med 61:128–140

    PubMed  Google Scholar 

  • Ehrenberg R (2015) Engineered yeast paves way for home-brew heroin. Nature 521(7552):267–268

    CAS  PubMed  Google Scholar 

  • Ehrenworth AM, Peralta-Yahya P (2017) Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat Chem Biol 13(3):249–258

    CAS  PubMed  Google Scholar 

  • Facchini PJ, De Luca V (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 269(43):26684–26690

    CAS  PubMed  Google Scholar 

  • Facchini PJ, De Luca V (1995) Phloem-specific expression of tyrosine/DOPA decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell 7(11):1811–1821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Facchini PJ, Park SU (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64(1):177–186

    CAS  PubMed  Google Scholar 

  • Facchini PJ, Penzes C, Johnson AG et al (1996) Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol 112(4):1669–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Facchini PJ, Bohlmann J, Covello PS et al (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30(3):127–131

    CAS  PubMed  Google Scholar 

  • Farrow SC, Facchini PJ (2013) Dioxygenases catalyze O-demethylation and O, O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy. J Biol Chem 288(40):28997–29012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farrow SC, Facchini PJ (2015) Papaverine 7-O-demethylase, a novel 2-oxoglutarate/Fe2+-dependent dioxygenase from opium poppy. FEBS Lett 589:2701–2706

    CAS  PubMed  Google Scholar 

  • Farrow SC, Hagel JM, Beaudoin GA et al (2015) Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol 11(9):728–732

    CAS  PubMed  Google Scholar 

  • Fisinger U, Grobe N, Zenk MH (2007) Thebaine synthase: a new enzyme in the morphine pathway in Papaver somniferum. Nat Prod Commun 2(3):249–253

    CAS  Google Scholar 

  • Fossati E, Ekins A, Narcross L et al (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun 5:3283

    PubMed  Google Scholar 

  • Fossati E, Narcross L, Ekins A et al (2015) Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS ONE 10(4):e0124459

    PubMed  PubMed Central  Google Scholar 

  • Frick S, Kramell R, Kutchan TM (2007) Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding. Metab Eng 9(2):169–176

    CAS  PubMed  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S et al (2017) Molecular targets and anticancer potential of sanguinarine—a benzophenanthridine alkaloid. Phytomedicine 34:143–153

    CAS  PubMed  Google Scholar 

  • Galanie S, Smolke CD (2015) Optimization of yeast-based production of medicinal protoberberine alkaloids. Microb Cell Fact 14:144

    PubMed  PubMed Central  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gesell A, Rolf M, Ziegler J et al (2009) CYP719B1 is salutaridine synthase, the C–C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem 284(36):24432–24442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276(33):30717–30723

    CAS  PubMed  Google Scholar 

  • Guo L, Winzer T, Yang X et al (2018) The opium poppy genome and morphinan production. Science 362(6412):343–347

    CAS  PubMed  Google Scholar 

  • Gurkok T, Turktas M, Parmaksiz I et al (2015) Transcriptome profiling of alkaloid biosynthesis in elicitor induced opium poppy. Plant Mol Biol Rep 33:673–688

    CAS  Google Scholar 

  • Gurkok T, Ozhuner E, Parmaksiz I et al (2016) Functional characterization of 4′OMT and 7OMT genes in BIA biosynthesis. Front Plant Sci 7:98

    PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6(4):273–275

    CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2012) Subcellular localization of sanguinarine biosynthetic enzymes in cultured opium poppy cells. Vitro Cell Dev Biol Plant 48:233–240

    CAS  Google Scholar 

  • Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol 54(5):647–672

    CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2017) Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. J Exp Bot 68(15):4029–4043

    CAS  PubMed  Google Scholar 

  • Hagel JM, Beaudoin GA, Fossati E et al (2012) Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. J Biol Chem 287(51):42972–42983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Mandal R, Han B et al (2015a) Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:220

    PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Morris JS, Lee EJ et al (2015b) Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:227

    PubMed  PubMed Central  Google Scholar 

  • Han X, Lamshoft M, Grobe N et al (2010) The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry 71(11–12):1305–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4(9):564–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hori K, Okano S, Sato F (2016) Efficient microbial production of stylopine using a Pichia pastoris expression system. Sci Rep 6:22201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang FC, Kutchan TM (2000) Distribution of morphinan and benzo[c]phenanthridine alkaloid gene transcript accumulation in Papaver somninferum. Phytochemistry 53(5):555–564

    CAS  PubMed  Google Scholar 

  • Ikezawa N, Iwasa K, Sato F (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 283(14):8810–8821

    CAS  PubMed  Google Scholar 

  • Ilari A, Franceschini S, Bonamore A et al (2009) Structural basis of enzymatic (S)-norcoclaurine biosynthesis. J Biol Chem 284(2):897–904

    CAS  PubMed  Google Scholar 

  • Kakeshpour T, Nayebi S, Rashidi Monfared S et al (2015) Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L. Physiol Mol Biol Plants 21(4):465–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano N, Kiuchi F, Kawahara N et al (2012) Genetic and phenotypic analyses of a Papaver somniferum T-DNA insertional mutant with altered alkaloid composition. Pharmaceuticals (Basel) 5(2):133–154

    CAS  Google Scholar 

  • Khan R, Khan MMA, Singh M et al (2007) Gibberellic acid and triacontanol can ameliorate the opium yield and morphine production in opium poppy (Papaver somniferum L.). Acta Agric Scandinavica B 57:307–312

    CAS  Google Scholar 

  • Kim JS, Nakagawa A, Yamazaki Y et al (2013) Improvement of reticuline productivity from dopamine by using engineered Escherichia coli. Biosci Biotechnol Biochem 77(10):2166–2168

    CAS  PubMed  Google Scholar 

  • Kluza A, Niedzialkowska E, Kurpiewska K et al (2018) Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway. J Struct Biol 202(3):229–235

    CAS  PubMed  Google Scholar 

  • Lang DE, Morris JS, Rowley M et al (2019) Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. J Biol Chem 294(40):14482–14498

    PubMed  PubMed Central  Google Scholar 

  • Larkin PJ, Miller JA, Allen RS et al (2007) Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5(1):26–37

    CAS  PubMed  Google Scholar 

  • Lee EJ, Facchini P (2010) Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 22(10):3489–3503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Facchini PJ (2011) Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiol 157(3):1067–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz R, Zenk MH (1995) Acetyl coenzyme A: salutaridinol-7-O-acetyltransferase from Papaver somniferum plant cell cultures. The enzyme catalyzing the formation of thebaine in morphine biosynthesis. J Biol Chem 270(52):31091–31096

    CAS  PubMed  Google Scholar 

  • Leshner AI (2019) Integrating tactics on opioids. Science 363(6434):1367

    CAS  PubMed  Google Scholar 

  • Li Y, Smolke CD (2016) Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun 7:12137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lee EJ, Chang L et al (2016) Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci Rep 6:39256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li S, Thodey K et al (2018) Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc Natl Acad Sci USA 115(17):E3922–E3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichman BR, Gershater MC, Lamming ED et al (2015) ‘Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. FEBS J 282(6):1137–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichman BR, Sula A, Pesnot T et al (2017) Structural evidence for the dopamine-first mechanism of norcoclaurine synthase. Biochemistry 56(40):5274–5277

    CAS  PubMed  Google Scholar 

  • Liscombe DK, Facchini PJ (2007) Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. J Biol Chem 282(20):14741–14751

    CAS  PubMed  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N et al (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66(20):2501–2520

    PubMed  Google Scholar 

  • Matsumura E, Nakagawa A, Tomabechi Y et al (2017) Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Biosci Biotechnol Biochem 81(2):396–402

    CAS  PubMed  Google Scholar 

  • Menendez-Perdomo IM, Facchini PJ (2018) Benzylisoquinoline alkaloids biosynthesis in sacred lotus. Molecules 23(11):2899

    PubMed Central  Google Scholar 

  • Minami H, Kim JS, Ikezawa N et al (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105(21):7393–7398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Triptahi V, Singh S et al (2013) Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum. PLoS ONE 8(1):e52784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JS, Facchini PJ (2016) Isolation and characterization of reticuline N-methyltransferase Involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy. J Biol Chem 291(45):23416–23427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JS, Dastmalchi M, Li J et al (2016) Plug-and-play benzylisoquinoline alkaloid biosynthetic gene discovery in engineered yeast. Methods Enzymol 575:143–178

    CAS  PubMed  Google Scholar 

  • Nakagawa A, Minami H, Kim JS et al (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326

    PubMed  Google Scholar 

  • Nakagawa A, Minami H, Kim JS et al (2012) Bench-top fermentative production of plant benzylisoquinoline alkaloids using a bacterial platform. Bioeng Bugs 3(1):49–53

    PubMed  Google Scholar 

  • Nakagawa A, Matsuzaki C, Matsumura E et al (2014) (R,S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep 4:6695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa A, Matsumura E, Koyanagi T et al (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7:10390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narcross L, Fossati E, Bourgeois L et al (2016) Microbial factories for the production of benzylisoquinoline alkaloids. Trends Biotechnol 34(3):228–241

    CAS  PubMed  Google Scholar 

  • Nutzmann HW, Huang A, Osbourn A (2016) Plant metabolic clusters—from genetics to genomics. New Phytol 211(3):771–789

    PubMed  PubMed Central  Google Scholar 

  • Onoyovwe A, Hagel JM, Chen X et al (2013) Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. Plant Cell 25(10):4110–4122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ounaroon A, Decker G, Schmidt J et al (2003) (R,S)-reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum—cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36(6):808–819

    CAS  PubMed  Google Scholar 

  • Oye KA, Lawson JC, Bubela T (2015) Regulate ‘home-brew’ opiates. Nature 521(7552):281–283

    CAS  PubMed  Google Scholar 

  • Pandey SS, Singh S, Babu CS et al (2016) Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta 243(5):1097–1114

    CAS  PubMed  Google Scholar 

  • Park MR, Chen X, Lang DE et al (2018) Heterodimeric O-methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant J 95(2):252–267

    CAS  PubMed  Google Scholar 

  • Pathak S, Lakhwani D, Gupta P et al (2013) Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis. PLoS ONE 8(5):e65622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pienkny S, Brandt W, Schmidt J et al (2009) Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). Plant J 60(1):56–67

    CAS  PubMed  Google Scholar 

  • Presley CC, Lindsley CW (2018) DARK Classics in chemical neuroscience: opium, a historical perspective. ACS Chem Neurosci 9(10):2503–2518

    CAS  PubMed  Google Scholar 

  • Ray T, Pandey SS, Pandey A et al (2019) Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynthesis in Papaver somniferum. Front Microbiol 10:925

    PubMed  PubMed Central  Google Scholar 

  • Reed JW, Hudlicky T (2015) The quest for a practical synthesis of morphine alkaloids and their derivatives by chemoenzymatic methods. Acc Chem Res 48(3):674–687

    CAS  PubMed  Google Scholar 

  • Ricci JA, Koolen PG, Shah J et al (2016) Comparing the outcomes of different agents to treat vasospasm at microsurgical anastomosis during the papaverine shortage. Plast Reconstr Surg 138(3):401e–408e

    CAS  PubMed  Google Scholar 

  • Rida PC, LiVecche D, Ogden A et al (2015) The noscapine chronicle: a pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med Res Rev 35(5):1072–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldi T (2015) “Poppy” yeast. EMBO Rep 16(11):1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robin AY, Giustini C, Graindorge M et al (2016) Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids. Plant J 87(6):641–653

    CAS  PubMed  Google Scholar 

  • Runguphan W, Glenn WS, O’Connor SE (2012) Redesign of a dioxygenase in morphine biosynthesis. Chem Biol 19(6):674–678

    CAS  PubMed  Google Scholar 

  • Sabzehzari M, Naghavi MR (2019) Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants. Gene 682:13–24

    CAS  PubMed  Google Scholar 

  • Samanani N, Alcantara J, Bourgault R et al (2006) The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J 47(4):547–563

    CAS  PubMed  Google Scholar 

  • Schlapfer P, Zhang P, Wang C et al (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173(4):2041–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockigt J, Antonchick AP, Wu F et al (2011) The Pictet–Spengler reaction in nature and in organic chemistry. Angew Chem Int Ed Engl 50(37):8538–8564

    CAS  PubMed  Google Scholar 

  • Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10(10):837–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trenchard IJ, Smolke CD (2015) Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng 30:96–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trenchard IJ, Siddiqui MS, Thodey K et al (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 31:74–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18(5):465–475

    CAS  PubMed  Google Scholar 

  • Unver T, Parmaksiz I, Dundar E (2010) Identification of conserved micro-RNAs and their target transcripts in opium poppy (Papaver somniferum L.). Plant Cell Rep 29(7):757–769

    CAS  PubMed  Google Scholar 

  • WHO (2017) WHO model list of essential medicines, 20th list. Genova WHO technical report series, no. 1006

  • Wijekoon CP, Facchini PJ (2012) Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing. Plant J 69(6):1052–1063

    PubMed  Google Scholar 

  • Winkler A, Lyskowski A, Riedl S et al (2008) A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4(12):739–741

    CAS  PubMed  Google Scholar 

  • Winzer T, Gazda V, He Z et al (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336(6089):1704–1708

    CAS  PubMed  Google Scholar 

  • Winzer T, Kern M, King AJ et al (2015) Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349(6245):309–312

    CAS  PubMed  Google Scholar 

  • Ziegler J, Diaz-Chavez ML, Kramell R et al (2005) Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 222(3):458–471

    CAS  PubMed  Google Scholar 

  • Ziegler J, Voigtlander S, Schmidt J et al (2006) Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant J 48(2):177–192

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by financial contributions from a Natural Sciences and Engineering Research Council of Canada Discovery Grant to PJF (Grant No. 183573). IMMP is the recipient of the Alberta Innovates Technology Futures Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Facchini.

Ethics declarations

Conflict of interest

PJF owns stock in, serves on the Board of Directors of, and is provided compensation by Willow Biosciences Inc. IMMP owns stock in Willow Biosciences Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Menéndez-Perdomo, I.M. & Facchini, P.J. Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochem Rev 18, 1457–1482 (2019). https://doi.org/10.1007/s11101-019-09644-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09644-w

Keywords

Navigation