Skip to main content
Log in

Recent use of selected phytochemistry to mitigate environmental challenges facing leather tanning industry: a review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Leather tanning technology impacts negatively on the environment as a result of chemicals in the tannery effluents that increases the concentrations of chemical oxygen demand, Biological oxygen demand, total dissolved solids, total Kjeldahl Nitrogen and formation of Cr(VI) among others in the environment. This has led to the profiling of the industry by legislative bodies as a major source of pollution and hence urgent cleaner and eco-friendly innovative technologies are required that will mitigate the environmental pollution. Many studies have recommended green chemistry tanning protocols and systems involving plants since are non-carcinogenic, non-toxic, biodegradable, agro-renewable, sustainable and economical. Numerous studies have evaluated the potential of phytochemistry in leather tanning processes. However, these studies only focused on individual processes or individual plant phytochemicals. Hence this review compiles the selected plants, their phytochemical screening results, their applications in tanning process and their potential for leather tanning. The review has shown enormous capacity of plants and their phytochemicals that can replace synthetic inorganic materials in leather processing and guarantee quality. Plants have a greater applicability in this industry since they have multiple beneficial actions during processing and the final processed leather. Some plants can be used at all tanning processes due to wide variety of important phytochemicals and the final leather is more superior quality to the conventionally processed leather. Other studies have alluded to the possibility of some plant products that have the potential in the industry but yet to be utilized. Further studies have been recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abba H, Musa H, Ado A (2013) Comparative properties of pure and sulphonated dyes extracted from henna (Lawsonia inermis (Linnaeus) and Kolanut (Cola nitida (Vert.) Schott & Endl.) plants. Ife J Sci 15:429–434

    Google Scholar 

  • Adzu B, Abbah J, Vongtau H et al (2003) Studies on the use of Cassia singueana in malaria ethnopharmacy. J Ethnopharmacol 88:261–267

    Article  PubMed  Google Scholar 

  • Affiang SD, Ggamde G, Okolo VN et al (2018) Synthesis of sulphated-fatliquor from neem (Azadirachta Indica) seed oil for leather tannage. Am J Eng Res 7:215–221

    Google Scholar 

  • Aloy M, Folachier A, Vulliermet B (1976) Tannery and pollution. Centre Technique D Cuir, Lyon, France, pp 230–260

  • Amir M, Mujeejb M, Khan A et al (2012) Phytochemical analysis and in vitro antioxidant activity of Uncaria gambier. Int J Green Pharm 6:67–72

    Article  Google Scholar 

  • Aquilar-Gavez A, Noratto G, Chambi F et al (2014) Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds. Food Chem 156:301–304

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao RJ (2015) Studies on tara-phosphonium combination tannage: approach towards a metal free eco-benign tanning system. JALCA 110:80–88

    CAS  Google Scholar 

  • Bayramoglu EE (2007) Unique biocide for the leather industry: essential oil of oregano. JALCA 102:347–352

    CAS  Google Scholar 

  • Bayramoglu EE, Gulumser G, Karaboz I (2006) Ecological and innovative fungicide for leather industry: essential oil of Origanum minutiflorum. JALCA 101:96–104

    CAS  Google Scholar 

  • Bayramoglu EE, Korgan A, Kalender D et al (2008) Elimination of free formaldehyde in leather by Vinca rosea and Camellia sinesis extracts. JALCA 103:89–127

    Google Scholar 

  • Beghetto V, Zancanaro A, Scrivanti A, Matteoli U, Pozza G (2013) The leather industry: chemistry insight part I: an overview of the industrial process. Sci Foscari. https://doi.org/10.7361/SciCF-448

    Article  Google Scholar 

  • Berhanu T, Ratnapandian S (2017) Extraction and optimization of natural dye from Hambo Hambo (Cassia singueana) plant used for coloration of tanned leather materials. Adv Mater Sci Eng 2017:7516409

    Article  CAS  Google Scholar 

  • Bielak E, Syguła-Cholewinska J (2017) Antimicrobial effect of lining leather fatliquored with the addition of essential oils. Biotechnol Food Sci 81:149–157

    Google Scholar 

  • Bordingnon S, Gutterres M, Velho SK et al (2012) Novel natural dyes for eco-friendly leather articles. J Aqeic 63:93–100

    CAS  Google Scholar 

  • Capecka E, Mareczek A, Leja M (2005) Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem 93:223–226

    Article  CAS  Google Scholar 

  • Colak SM (2006) Soaking with tannins: the biocidal activity of vegetable tannins used in the soaking float. J Soc Leather Technol Chemists 90:193–196

    CAS  Google Scholar 

  • Colak SM, Yapici BM, Yapici AN (2010) Determination of antimicrobial activity of tannic acid in pickling process. Rom Biotechnol Lett 15:5325–5330

    CAS  Google Scholar 

  • Colak SM, Dandar U, Kilic E (2014) Antioxidant effect of tannic acid on formation of formaldehyde and hexavalent chromium compounds in leather. Tekstil ve Konfeksiyon 24:105–110

    Google Scholar 

  • Covington AD (2011) Tanning chemistry. RSC Publishing, Cambridge

    Google Scholar 

  • Das D, Maulik SR, Bhattacharya SC (2007) Dyeing of wool and silk with Bixa orellana. Indian J Fibre Text Res 32:366–372

    CAS  Google Scholar 

  • Devikavathi G, Suresh S, Rose C, Muralidharan C (2014) Prevention of carcinogenic Cr (VI) formation in leather- a three pronged approach for leather products. Ind J Chem Technol 21:7–13

    CAS  Google Scholar 

  • Dixit S, Yadav A, Dwivedi PD, Das M (2015) Toxic hazards of leather industry and technologies to combat threat: a review. J Cleaner Prod 87:39–49

    Article  CAS  Google Scholar 

  • Falcao L, Araujo MEM (2018) Vegetable tannins used in the manufacture of historic leathers. Molecules 23:1081

    Article  CAS  PubMed Central  Google Scholar 

  • Fathima NN, Saravanabhavan S, Rao RJ et al (2004) An eco-benign tanning system using aluminium, tannic acid, and silica combination. JALCA 99:73–781

    CAS  Google Scholar 

  • Fathima NN, Aravindhan R, Rao JR et al (2006) Tannic acid-phosphonium combination: a versatile chrome-free organic tanning. JALCA 101:161–168

    CAS  Google Scholar 

  • Fuck WF, Gutteres M, Marcilio NR et al (2011) The influence of chromium supplied by tanning and wet finishing processes on the formation of Cr(VI) in leather. Braz J Chem Eng 28:221–228

    Article  CAS  Google Scholar 

  • Gandhiraja N, Sriram S, Meenaa V et al (2009) Studying different chemicals components of Mimosa pudica. Ethnobot Leafl 13:618–624

    Google Scholar 

  • Hussein SA (2017) Utilization of tannins extract of Acacia seyal Bark (Taleh) in Tannages of leather. J Chem Eng Process Technol 8:334

    Google Scholar 

  • Jagetia GC, Lalhmangaihi C (2018) Phytochemical profiling and antioxidant activity of Lajwanti Mimosa pudica Linn. in vitro. Int J Plant Stud 1:1–13

    Google Scholar 

  • Klaric MS, Mastelic KJ, Pieckova E et al (2007) Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol aginst moulds from damp dwellings. Lett Appl Microbiol 44:36–42

    Article  CAS  Google Scholar 

  • Kusumawati F, Riyadi PH, Rianingsih L (2016) Applications indigo (Indigofera tinctoria L.) as natural dyeing in milkfish [Chanos chanos (Forsskal, 1775)] skin tanning process. Aquatic 7:92–99

    Google Scholar 

  • Ma J, Gao J, Wang H et al (2017) Dissymmetry gemini sulfosuccinate surfactant from vegetable oil: a kind of environmentally friendly fatliquoring agent in the leather industry. CS Sustain Chem Eng 5:10693–10701

    Article  CAS  Google Scholar 

  • Mahmoud ZF, Salam NA, Khafagy SM (1980) Constituents of henna leaves—Lawsonia inermis L. growing in Egypt. Fitoterapia 51:153–155

    CAS  Google Scholar 

  • Miri S (2018) Phytochemistry, antioxidant and lipid peroxidation inhibition of the oils of Lavandula officianalis L. in Iran. Int J Food Prop 21:2550–2556

    Article  CAS  Google Scholar 

  • Mishra AK, Sahu N, Mishra A et al (2010) Phytochemical screening and antioxidant activity of essential oil of eucalyptus leaf. Pharmacogn J 2:25–28

    Article  Google Scholar 

  • Musa AE, Gasmelseed GA (2012) Characterization of Lawsoniainermis (Henna) as a vegetable tanning material. J For Prod Ind 1:35–40

    CAS  Google Scholar 

  • Musa AE, Gasmelseed GA (2013a) Eco-friendly vegetable combination tanning system for production of hair-on shoe upper leather. J For Prod Ind 2:5–12

    CAS  Google Scholar 

  • Musa AE, Gasmelseed GA (2013b) Development of eco-friendly combination tanning system for the manufacture of upper leathers. Int J Adv Ind Eng 1:9–15

    Google Scholar 

  • Musa AE, Madhan B, Madhulatha W et al (2008) Henna extract: can it be an alternative retanning agent? JALCA 103:188–193

    CAS  Google Scholar 

  • Musa AE, Madhan B, Madhulatha W et al (2009) Coloring of leather using henna-natural alternative material for dyeing. JALCA 104:183–190

    CAS  Google Scholar 

  • Musa AE, Madhan B, Kanth SV et al (2010) Cleaner tanning process for the manufacture of upper leathers. Clean Technol Environ Policy 12:381–388

    Article  CAS  Google Scholar 

  • Nalyanya KM, Rop RK, Onyuka A et al (2015) Influence of UV radiation on the viscoelastic properties and dynamic viscosity of bovine hide using dynamic mechanical analysis. J Therm Anal Calorim 123:363–370

    Article  CAS  Google Scholar 

  • Nalyanya KM, Rop RK, Onyuka AS, Birech Z et al (2018) Effect of crusting operations on the physical properties of leather. Leather Footw J 18:283–294

    Article  CAS  Google Scholar 

  • Nayak CA, Chethana S, Rastogi NK et al (2006) Enhanced mass transfer during solid–liquid extraction of gamma irradiated red beetroot. Radiat Phys Chem 75:173–1778

    Article  CAS  Google Scholar 

  • Negi BS, Dave BP (2010) In vitro antimicrobial activity of Acacia catechu and its phytochemical analysis. Indian J Microbiol 50:369–374

    Article  CAS  PubMed  Google Scholar 

  • Nurbalia E (2016) Characteristics identification Gambier (Uncaria Gambier Roxb) as leather tanning agent. Int Conf Technol Innov Soc 2016:62–67

    Article  Google Scholar 

  • Ozgunay H, Afsar A, Colak S et al (2012) Investigations on determination of antioxidant properties of certain plant products and their effects on the prevention of Cr(VI) and formaldehyde formation in leather. In: ICAMS 2012–4th international conference on advanced materials and systems

  • Ozkan G, Baydar H, Erbas S (2010) The influence of harvest time on essential oil composition, phenolic constituents and antioxidant properties of Turkish oregano (Origanum Onites L.). J Sci Food Agric 90:205–209

    Article  CAS  PubMed  Google Scholar 

  • Ozkan CK, Ozgunay H, Kalender D (2017) A novel way to avoid Cr(VI) formation in leather: copper mordanting. J Soc Leather Technol Chem 101:94–95

    CAS  Google Scholar 

  • Pervaiz S, Mughal TA, Khan FZ (2016a) Green fashion colours: a potential value for Punjab leather industry to promote sustainable development. Pak J Contemp Sci 1:28–36

    Google Scholar 

  • Pervaiz S, Mughal TA, Najeebullah M et al (2016b) Extraction of natural dye from Rosa damascena Miller.—a cost effective approach for leather industry. Int J Biosci 8:83–92

    CAS  Google Scholar 

  • Pervaiz S, Mughal TA, Khan FZ et al (2017) Environmental friendly leather dyeing using Tagetes erecta L. (Marigold) waste flowers. Int J Biosci 10:382–390

    CAS  Google Scholar 

  • Sahu B, Rathinam A, Javid MA et al (2017) Preparation of fatliquor having antifungal activity using the oil of Citrullus colocynthis for application in leather applications. J Indus Crop Prod 10:553–557

    Article  CAS  Google Scholar 

  • Sanz M, Cadahia E, Esteruelas E et al (2010) Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood: effect of toasting at cooperage. J Agric Food Chem 58:9631–9640

    Article  CAS  PubMed  Google Scholar 

  • Saravanabhavan S, Fathima NN, Rao JR et al (2004) Combination of white minerals with natural tannins chrome-free tannage for garment leathers. J Soc Leather Technol Chem 88:76–81

    CAS  Google Scholar 

  • Seabra IJ, Chim RB, Salgueiro P et al (2017) Influence of solvent additives on the aqueous extraction of tannins from pine bark: potential extracts for leather tanning. J Chem Technol Biotechnol 94:1169–1182

    Google Scholar 

  • Selvi AT, Aravindhan R, Madhan B, Rao RJ (2013) Studies on the application of natural dye extract from Bixa orellana seeds for dyeing and finishing of leather. Indus Crop Prod 43:84–86

    Article  CAS  Google Scholar 

  • Sirvaityte J, Siugzdaite J, Valeika V (2011) Application of commercial essential oils of eucalyptus and lavender as natural preservative for leather tanning industry. Rev Chim (Bucharest) 62:884–893

    CAS  Google Scholar 

  • Sirvaityte J, Siugzdaite J, Valeika V et al (2012) Application of essential oils of thyme as a natural preservative in leather tanning. Proc Estonian Acad Sci 61:220–227

    Article  CAS  Google Scholar 

  • Sivakumar V, Prakash PR, Rao PG, Ramabrahmam BV, Swaminathan G (2008) Power ultrasound in fatliquor preparation based on vegetable oil for leather application. J Cleaner Prod 16:549–553

    Article  Google Scholar 

  • Sivakumar V, Mohan R, Rangasamy T et al (2016) Antimicrobial activity of Terminalia chebula Retz. (Myrobalan). Indian J Nat Prod Resour 7:65–68

    Google Scholar 

  • Sundari N (2015) Extraction and optimization of Mucura pruriens for dyeing of leather. Pol J Chem Technol 17:57–63

    Article  CAS  Google Scholar 

  • Tariq L, Reyaz A (2012) Phytochemical analysis of Camellia sinensis leaves. Int J Drug Dev Res 4:311–316

    CAS  Google Scholar 

  • Tawfik HM, Gasmelseed GA, Mohammed FEF (2017) Using characterization and synthesis of fatliquor from Sudanese Castor Oil. Int J Eng Sci Res Technol 6:11–16

    CAS  Google Scholar 

  • Upadhyay A, Agrahari P, Singh DK (2014) A review on the pharmacological aspects of Terminalia chebula. Int J Pharmacol 10:289–298

    Article  CAS  Google Scholar 

  • Zengin ACA, Crudu M, Maier SS, Deselnicu V, Albu L, Gulumser G, Bitlisli BO, Basaran B, Mutlu MM (2012) Eco-leather: chromium-free leather production using titanium, oligomeric melamine, formaldehyde resin and resorcinol tanning agents and the properties of the resulting leathers. Ekoloji 21:17–25

    Article  CAS  Google Scholar 

  • Zengin ACA, Colak SM, Zengin G et al (2014) Eco-friendly soaking process using tannic acid as an alternative bactericide. Arch Environ Prot 40(1):3–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was performed with the financial support from National Research (NRF)-Kenya for PHD Research Grant 2016/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallen Mulilo Nalyanya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalyanya, K.M., Rop, R., Onyuka, A. et al. Recent use of selected phytochemistry to mitigate environmental challenges facing leather tanning industry: a review. Phytochem Rev 18, 1361–1373 (2019). https://doi.org/10.1007/s11101-019-09651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09651-x

Keywords

Navigation