Skip to main content
Log in

Computational study of [(phenanthroline)2FeII/III–(terephthalate)–CoIII/II(phenanthroline)2]3+ binuclear complex

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Bistability of the proposed [(phenanthroline)2FeII/III–(terephthalate)–CoIII/II(phenanthroline)2]3+ binuclear complex, arising from intramolecular FeII/III ↔ CoIII/II charge transfer, is investigated based on energetics, geometries, atomic charges, electric polarizabilities, and IR and UV-Vis spectra obtained computationally at (TD)DFT-B3LYP/LANL2DZ level of theory. Two distinct stable states are obtained which have different characteristics, including structures, charge distributions, and spectroscopic properties. Also, the well-defined first-order saddle point obtained between these two states using the QST3 search method, having a 1.182 eV activation (barrier) energy for the FeIICoIII → FeIIICoII reaction, furthermore approves bistability in this complex. This value of activation energy suggests that switching between the two charge distribution states FeII–CoIII and FeIII–CoII in this complex may be induced by electric field and/or infrared radiation, and thus, it can be candidate as an infrared radiation- or electric field-driven molecular two-state switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sato O, Tao J, Zhang Y (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187

    CAS  Google Scholar 

  2. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716

    PubMed  CAS  Google Scholar 

  3. Migliori M, Reiff WM, Arif AM, Miller JS (2004) Observation of hysteretic bistability in [CoIIICp2]+[FeIIII4]. Inorg Chem 43:6875–6877

    PubMed  CAS  Google Scholar 

  4. Dei A, Gatteschi D, Sangregorio C, Sorace LA (2004) Quinonoid metal complexes: toward molecular switches. Chem Res 37:827–835

    CAS  Google Scholar 

  5. Jang YH, Goddard WA (2010) Stoddart-Heath [2]Rotaxane molecular switch made simple: a density functional theory study on model junction devices. J Phys Chem C 114:4611–4616

    CAS  Google Scholar 

  6. Raymo FM, Alvarado RJ, Pacsial EJ, Alexander D Electron transport in self-assembled bipyridinium multilayers. J Phys Chem B 108(2004):8622–8625

  7. Liu T, Zhang YJ, Kanegawa S, Sato O (2010) Photoinduced metal-to-metal charge transfer toward single-chain magnet. J Am Chem Soc 132:8250–8251

    PubMed  CAS  Google Scholar 

  8. Feringa BLA (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34:504–513

    PubMed  CAS  Google Scholar 

  9. Dei A (2005) Photomagnetische effekte in polycyanometallaten: entsteht aus chemischer grundlagenforschung eine interessante zukünftige technik? Angew Chem Int Ed 117:1184–1187

    Google Scholar 

  10. Venkataramani S, Jana U, Dommaschk M, Soennichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solutions at room temperature. Science 331:445–448

    PubMed  CAS  Google Scholar 

  11. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt-Iron cyanide. Science 272:704–705

    PubMed  CAS  Google Scholar 

  12. Sessoli R (2010) Magnetic clusters: spinning into control. Nat Chem 2:346–347

    CAS  Google Scholar 

  13. Takahashi K, Cui H-B, Okano Y, Kobayashi H, Mori H, Tajima H, Einaga Y, Sato O (2008) Evidence of the chemical uniaxial strain effect on electrical conductivity in the spin-crossover conducting molecular system: [FeIII(qnal)2][Pd(dmit)2]5 center dot acetone. J Am Chem Soc 130:6688–6689

    PubMed  CAS  Google Scholar 

  14. Miyasaka H, Motokawa N, Matsunaga S, Yamashita M, Sugimoto K, Mori T, Toyota N, Dunbar KR (2010) Control of charge transfer in a series of Ru2(II,II)/TCNQ two-dimensional networks by tuning the electron affinity of TCNQ units: a route to synergistic magnetic/conducting materials. J Am Chem Soc 132:1532–1544

    PubMed  CAS  Google Scholar 

  15. Bleuzen A, Marvaud V, Mathoniére C, Sieklucka B, Verdaguer M (2009) Photomagnetism in clusters and extended molecule-based magnets. Inorg Chem 48:3453–3466

    PubMed  CAS  Google Scholar 

  16. Létard J-F, Guionneau P, Goux-Capes L (2004) Spin crossover in transition metal compounds III, vol 235. Springer-Verlag, Berlin, p 221

    Google Scholar 

  17. Szaciłowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548

    PubMed  Google Scholar 

  18. Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399

    PubMed  CAS  Google Scholar 

  19. Russew MM, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348–3360

    PubMed  CAS  Google Scholar 

  20. Zheng YB, Pathem BK, Hohman JN, Thomas JC, Kim M, Weiss PS (2013) Photoresponsive molecules in well-defined nanoscale environments. Adv Mater 25:302–312

    PubMed  CAS  Google Scholar 

  21. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184

    PubMed  CAS  Google Scholar 

  22. Kahn O, Martinez CJ (1998) spin-transition polymers: from molecular materials toward memory devices. Science 279:44–48

    CAS  Google Scholar 

  23. Ohkoshi SI, Imoto K, Tsunobuchi Y, Takano S, Tokoro H (2011) light-induced spin-crossover magnet. Nat Chem 3:564–569

    PubMed  CAS  Google Scholar 

  24. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031

    CAS  Google Scholar 

  25. Linares J, Codjovi E (2012) Y. Garcia pressure and temperature spin crossover sensors with optical detection. Sensors 12:4479–4492

    PubMed  CAS  Google Scholar 

  26. Matsuda M, Isozaki H, Tajima H (2008) Reproducible on-off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films 517:1465–1467

    CAS  Google Scholar 

  27. Moodera JS, Koopmans B, Oppeneer PM (2014) On the path toward organic spintronics. MRS Bull 39:578–581

    CAS  Google Scholar 

  28. Eisenhart RJ, Clouston LJ, Lu CC (2015) Configuring bonds between first-row transition metals. Acc Chem Res 48:2885–2894

    PubMed  CAS  Google Scholar 

  29. Lichtenberger DL, Calabro DC, Kellogg GE (1984) Electronic structure and bonding characteristics of cyclopentadienyl d8 metal-ligand complexes. Core and valence ionization study of CpM(CO)2 where M = Co and Rh and Cp = η5-C5H5 and η5-C5Me5. Organometallics 11:1623–1630

    Google Scholar 

  30. Holland PL (2008) Electronic structure and reactivity of three-coordinate iron complexes. Acc Chem Res 41:905–914

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Ravikumar I, Ghosh P (2012) Recognition and separation of sulfate anions. Chem Soc Rev 41:3077–3098

    PubMed  CAS  Google Scholar 

  32. Wenzel M, Hiscock JR, Gale PA (2012) Anion receptor chemistry: highlights from 2010. Chem Soc Rev 41:480–520

    PubMed  CAS  Google Scholar 

  33. Leong WL, Vittal JJ (2010) One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chem Rev 111:688–764

    PubMed  Google Scholar 

  34. Hayami S, Hiki K, Kawahara T, Maeda Y, Urakami D, Inoue K, Ohama M, Kawata S, Sato O (2009) Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions. Chem Eur J 15:3497–3508

    PubMed  CAS  Google Scholar 

  35. Nevill SM, Moubaraki B, Murray KS, Kepert CG (2007) A thermal spin transition in a nanoporous iron(II) coordination framework material. Angew Chem Int Ed 119:2105–2108

    Google Scholar 

  36. Halder G, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298:1762–1765

    PubMed  CAS  Google Scholar 

  37. Hauser A, Vef A, Adler P (1991) Intersystem crossing dynamics in Fe(lI) coordination compounds. J Chem Phys 95:8710–8717

    CAS  Google Scholar 

  38. Liu T, Darensbourg YM (2007) A Mixed-Valent, Fe(II)Fe(I), Diiron complex reproduces the unique rotated state of the [FeFe]hydrogenase active site. J Am Chem Soc 129:7008–7009

    PubMed  CAS  Google Scholar 

  39. Moussa NO, Molnàr G, Bonhommeau S, Zwick A, Mouri S, Tanaka K, Real JA, Bousseksou A (2005) Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases. PRL 94:107205–107209

    Google Scholar 

  40. Nicolet Y, de Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601

    PubMed  CAS  Google Scholar 

  41. Cheah MH, Tard C, Borg SJ, Liu X, Ibrahim SK, Pickett CJ, Best SP (2007) Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels. J Am Chem Soc 129:11085–11092

    PubMed  CAS  Google Scholar 

  42. Moussa NO, Trzop E, Mouri S, Zein S, Molnár G, Gaspar AB, Collet E, Buron-Le Cointe M, Real JA, Borshch S, Tanaka K, Cailleau H, Bousseksou A (2007) Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpym)}. Phys Rev B 75:054101–054108

    Google Scholar 

  43. Satcher Jr JH, Droege MW, Olmstead MM, Balch AL (2001) A mixed oxidation state, binuclear iron complex containing an unsymmetrically coordinating ligand. A ligand-induced switch in redox behavior. Inorg Chem 40:1454–1458

    PubMed  CAS  Google Scholar 

  44. Gütlich P, Gaspar AB, Garcia Y (2013) Spin state switching in iron coordination compounds. Beilstein J Org Chem 9:342–391

    PubMed  PubMed Central  Google Scholar 

  45. Mouri S, Moussa NO, Molnár G, Real JA, Gaspar AB, Bousseksou A, Tanaka K (2008) Light induced excited spin state trapping in the binuclear spin crossover compound [Fe(bpym)(NCS)2]2(bpym) exhibiting a high-spin ground state. Chem Phys Lett 456:215–219

    CAS  Google Scholar 

  46. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052

    PubMed  CAS  Google Scholar 

  47. Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST, Happe T (2017) Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat Commun 8:16115–16117

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang HY, Mijangos E, Ott S, Thapper A (2014) Water oxidation catalyzed by a dinuclear cobalt-Polypyridine complex. Angew Chem Int Ed 53:1–5

    CAS  Google Scholar 

  49. Wang Y, Li J, Zhang L, Chen C, Feng R, Zhao Y, Zhang YQ, Tan G, Song Y, Wang X (2018) Magnetic on–off switching in redox non-innocent ligand bridged binuclear cobalt complexes. Dalton Trans 47:17211–17215

    PubMed  CAS  Google Scholar 

  50. Wang WZ, Wu Y, Ismayilov RH, Kuo JH, Yeh CY, Lee HW, Fu MD, Chen C h, Lee GH, Peng SM (2014) A magnetic and conductive study on a stable defective extended cobalt atom chain. Dalton Trans 43:6229–6235

    PubMed  CAS  Google Scholar 

  51. Fortier S, Roy JJL, Chen CH, Vieru V, Murugesu M, Chibotaru LF, Mindiola DJ, Caulton KG (2013) A dinuclear cobalt complex featuring unprecedented anodic and cathodic redox switches for single-molecule magnet activity. J Am Chem Soc 135:14670–14678

    PubMed  CAS  Google Scholar 

  52. Mulyana Y, Alley KG, Davies KM, Abrahams BF, Moubaraki B, Murray KS, Boskovi C (2014) Dinuclear cobalt(II) and cobalt(III) complexes of bis-bidentate napthoquinone ligands. Dalton Trans 43:2499–2511

    PubMed  CAS  Google Scholar 

  53. Madadi A, Itazaki M, Gable RW, Moubaraki B, Murray KS, Boskovi C (2015) Electronic lability in a dinuclear cobalt bis-dioxolene complex. Eur J Inorg Chem:4991–4995

    CAS  Google Scholar 

  54. Jana NC, Brandão P, Saha A, Panja A (2017) Synthesis, crystal structure and electronic property of a tetraoxolene bridged dinuclear cobalt(II) complex with bipyridyl blocking ligand. Polyhedron 138:31–36

    CAS  Google Scholar 

  55. Fujisawa K, Yamada S, Yanagi Y, Yoshioka Y, Kiyohara A, Tsutsumi O (2015) Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli. Sci Rep 5:7934–7937

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Rawashdeh-Omary MA, Omary MA, Jr JP (2001) Fackler, Chemistry and optoelectronic properties of stacked supramolecular entities of trinuclear gold(I) complexes sandwiching small organic acids. J Am Chem Soc 123:9689–9691

    PubMed  CAS  Google Scholar 

  57. Hong EYH, Yam VWW (2017) Triindole-tris-alkynyl-bridged trinuclear gold(I) complexes for cooperative supramolecular self-assembly and small-molecule solution-processable resistive memories. ACS Appl Mater Interfaces 9:2616–2624

    PubMed  CAS  Google Scholar 

  58. Steinert M, Schneider B, Dechert S, Demeshko S, Meyer F (2014) A trinuclear defect-grid Iron(II) spin crossover complex with a large hysteresis loop that is readily silenced by solvent vapor. Angew Chem Int Ed 53:6135–6139

    CAS  Google Scholar 

  59. Pittala N, Thetiot F, Charles C, Triki S, Boukheddaden K, Chastanetc G, Marchivie M (2017) Unprecedented trinuclear FeII triazole-based complex exhibiting a concerted and complete sharp spin transition above room temperature. Chem Commun 53:8356–8359

    CAS  Google Scholar 

  60. Maruyama T, Kikukawa Y, Sakiyama H, Katayama M, Inadad Y, Hayashi Y (2017) A highly-flexible cyclic-decavanadate ligand for interconversion of dinuclear-and trinuclearcobalt(II) and manganese(II) cores. RSC Adv 7:37666–37674

    CAS  Google Scholar 

  61. Donamaría R, Gimeno MC, Lippolis V, López-de-Luzuriaga JM, Monge M, Elena Olmos M (2016) Tuning the luminescent properties of a Ag/Au tetranuclear complex featuring metallophilic interactions via solvent-dependent structural isomerization. Inorg Chem 55:11299–11310

    PubMed  Google Scholar 

  62. Bursten BE, Chisholm MH, Clark RJH, Firth S, Hadad CM, MacIntosh AM, Wilson PJ, Woodward PM, Zaleski JM (2002) Oxalate-bridged complexes of dimolybdenum and ditungsten supported by pivalate ligands: (tBuCO2)3M2(μ-O2CCO2)M2(O2CtBu)3. Correlation of the solid-State, molecular, and electronic structures with raman, resonance raman, and electronic spectral data. J Am Chem Soc 124:3050–3063

    PubMed  CAS  Google Scholar 

  63. Akine S (2018) Dynamic helicity control of oligo(salamo)-based metal helicates. Inorganics 80:1–19

    Google Scholar 

  64. Dai Z, Lee J, Zhang W (2012) Chiroptical switches: applications in sensing and catalysis. molecules 17:1247–1277

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Pavlović G, Majerb M, Cindric M (2016) A tetranuclear cubane-like nickel(II) complex with a tridentate salicylideneimine schiff base ligand: tetrakis[l3-4-methyl-N-(2-oxidophenyl)-salicylideneiminato]tetrakis [methanolnickel(II)] methanol 0.8-solvate. Acta Cryst 72:1776–1779

    Google Scholar 

  66. Ghisolfi A, Waldvogel A, Routaboul L, Braunstein P (2014) Reversible switching of the coordination modes of a pyridine-functionalized quinonoid zwitterion; its di- and tetranuclear palladium complexes. Inorg Chem 53:5515–5526

    PubMed  CAS  Google Scholar 

  67. Matsumoto T, Newton GN, Shiga T, Hayami S, Matsui Y, Okamoto H, Kumai R, Murakami Y, Oshio H (2014) Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat Commun 5:3865–3871

    PubMed  CAS  Google Scholar 

  68. Hogue RW, Singh S, Brooker S (2018) Spin crossover in discrete polynuclear iron(II) complexes. Chem Soc Rev 47:7303–7338

    PubMed  CAS  Google Scholar 

  69. Shirani H, Sabzyan H (2018) Computational spectroscopic characterization of a bistable binuclear complex [(CO)2 (benzoate)FeII/III(terephthalate)CoIII/II(benzoate)(CO)2]+. Aust J Chem 71:348–359

    CAS  Google Scholar 

  70. Sabzyan H, Shirani H (2018) Bistability of an iron-cobalt binuclear complex. Int J Quantum Chem 119:1–14

    Google Scholar 

  71. Liu C, Liu T, Hall MB (2015) Influence of the density functional and basis set on the relative stabilities of oxygenated isomers of diiron models for the active site of [FeFe]-Hydrogenase. J Chem Theory Comput 11:205–214

    PubMed  CAS  Google Scholar 

  72. Yang Y, Michael NW, Kenneth MM (2009) Assessment of the “6-31+G**+LANL2DZ” mixed basis bet coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for First-Row-Transition-Metal complexes. J Phys Chem A 113:9843–9851

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Liu T, Li B, Singleton ML, Hall MB, Darensbourg MY (2009) Sulfur oxygenates of biomimetics of the diiron subsite of the [FeFe]-Hydrogenase active site: properties and oxygen damage repair possibilities. J Am Chem Soc 131:8296–8307

    PubMed  CAS  Google Scholar 

  74. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    PubMed  CAS  Google Scholar 

  75. Mikhail N (1997) Glukhovtsev, Performance of the B3LYP/ECP DFT calculations of iron-containing compounds. J Phys Chem A 101:316–323

    Google Scholar 

  76. Balzani V (ed) (2001) Electron transfer in chemistry, vol 1-5. Wiley, Weinheim

    Google Scholar 

  77. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    PubMed  Google Scholar 

  78. A. Nitzan, Chemical dynamics in condensed phases; relaxation, transfer, and reactions in condensed molecular systems, oxford university press, oxford, 2006.

    Google Scholar 

  79. Chen H, Ratner MA, Schatz GC (2011) Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. J Photochem Photobiol A 221:143–147

    CAS  Google Scholar 

  80. Skourtis SS, Waldeck DH, Beratan DN (2010) Fluctuations in biological and bioinspired electron-transfer reactions. Annu Rev Phys Chem 61:461–485

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Ricks AB, Solomon GC, Colvin MT, Scott AM, Chen K, Ratner MA, Wasielewski MR (2010) controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges. J Am Chem Soc 132:15427–15434

    PubMed  CAS  Google Scholar 

  82. Anson WC, Ghosh S, Schiffer HS, Stahl SS (2016) Co(salophen)-catalyzed aerobic oxidation of p-Hydroquinone: mechanism and implications for aerobic oxidation catalysis. J Am Chem Soc 138:4186–4193

    PubMed  CAS  Google Scholar 

  83. Corcos RA, Villanueva O, Walroth CR, Sharma KS, Bacsa J, Lancaster MK, MacBeth EC, Berry FJ (2016) Oxygen activation by Co(II) and a redox non-innocent ligand: spectroscopic characterization of a radical–Co(II)-superoxide complex with divergent catalytic reactivity. J Am Chem Soc 138:1–5

    Google Scholar 

  84. Guo XK, Zhang LB, Wei D, Niu JL (2015) Mechanistic insights into cobalt(II/III)-catalyzed C-H oxidation: a combined theoretical and experimental study. Chem Sci 6:7059–7071

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Li M, Li D, OKeeffe M, Yaghi OM (2014) Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114:1343–1370

    PubMed  CAS  Google Scholar 

  86. Ying-Ji S, Qian-Qian H, Tano T, Itoh S (2013) Flavonolate complexes of MII (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-Dioxygenase. Inorg Chem 52:10936–10948

    Google Scholar 

  87. Balamurugan M, Suresh E, Palaniandavar M (2016) μ-oxo-and bis(μ-carboxylato)-bridged biiron(III) complexes of a 3N ligand as catalysts for alkane hydroxylation: steroelectronic factors of carboxylate bridge determine the catalytic efficiency. Dalton Trans 45:11422–11436

    PubMed  CAS  Google Scholar 

  88. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  89. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985

    CAS  Google Scholar 

  90. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110 13:6158–6170

    Google Scholar 

  91. Xu X (2004) The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J Chem Phys 121:4068–4082

    PubMed  CAS  Google Scholar 

  92. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  93. Lee C, Yang W, Parr RG (1988) Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  94. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    CAS  Google Scholar 

  95. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994). J Phys Chem 98:11623–11810

    CAS  Google Scholar 

  96. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    CAS  Google Scholar 

  97. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Google Scholar 

  98. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford, 2009.

  99. GaussView 03, Gaussian Inc., Pittsburg 15106, USA

  100. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    CAS  Google Scholar 

  101. Peng CY, Ayala P, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    CAS  Google Scholar 

  102. Athanassios CT (2014) DFT flavor of coordination chemistry. Coord Chem Rev 272:1–29

    Google Scholar 

Download references

Acknowledgments

Supports from the Islamic Azad University in the form of research facilities are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shirani.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, H., Sabzyan, H. Computational study of [(phenanthroline)2FeII/III–(terephthalate)–CoIII/II(phenanthroline)2]3+ binuclear complex. Struct Chem 31, 809–821 (2020). https://doi.org/10.1007/s11224-019-01442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01442-6

Keywords

Navigation