Skip to main content

Advertisement

Log in

Flat or angular? The impact of the nitrogen atom hybridization on the docking results for arylpiperazine derivatives as an example

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure-based virtual screening has become a standard approach in modern drug discovery. It involves molecular docking and estimation of the ligand binding likelihood based on the scoring function. Surprisingly, in the search for new pharmaceuticals, one of the bottlenecks can be the ligand’s 3D structure prediction, especially for molecules with amine groups. In our work, the impact of the nitrogen atom hybridization in arylpiperazine derivatives on the results of docking to serotonin receptor type 7 is discussed. Our docking/re-docking studies show that the nitrogen lone pair may be involved in weak ligand–protein interactions. The presented results suggest that assumption of amine group planarity in the arylpiperazine 3D structure prediction may be a misleading factor in computer-aided drug discovery, influencing active conformation prediction. With our paper, we would like to raise awareness that in the case of compounds with amine groups, special care must be taken in the 3D ligand’s structure preparation for molecular docking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  Google Scholar 

  2. Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA : algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50:572–584

    Article  CAS  Google Scholar 

  3. Schwab CH (2010) 3D pharmacophore elucidation and virtual screening conformations and 3D pharmacophore searching. Drug Discov Today 7:e245–e253

    Article  CAS  Google Scholar 

  4. Boyle NMO, Banck M, James CA et al (2011) Open Babel : an open chemical toolbox. J Cheminform 3:1–14

    Article  CAS  Google Scholar 

  5. Abagyan R, Totrov M, Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins optimal probability distribution for a random step in the Monte Carlo procedure formula for the modified image approximation of the electrostat. J Mol Biol 235:983–1002

    Article  CAS  Google Scholar 

  6. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 57:10257–10274

    Article  CAS  Google Scholar 

  7. Siracusa MA, Salerno L, Modica MN et al (2008) Synthesis of new arylpiperazinylalkylthiobenzimidazole, benzothiazole, or benzoxazole derivatives as potent and selective 5-HT1A serotonin receptor ligands. J Med Chem 51:4529–4538

    Article  CAS  Google Scholar 

  8. Salerno L, Pittal V, Modica MN et al (2014) Structure-activity relationships and molecular modeling studies of novel arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones as 5-HT7 and 5-HT1A receptor ligands. Eur J Med Chem 85:716–726

    Article  CAS  Google Scholar 

  9. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  10. Ho BY, Karschin A, Branchek T et al (1992) The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: a site-directed mutation study. FEBS Lett 312:259–262

    Article  CAS  Google Scholar 

  11. Wang CD, Gallaher TK, Shih JC (1993) Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol Pharmacol 43:931–940

    PubMed  CAS  Google Scholar 

  12. Kołaczkowski M, Nowak M, Pawłowski M, Bojarski AJ (2006) Receptor-based pharmacophores for serotonin 5-HT7R antagonists’s implications to selectivity. J Med Chem 49:6732–6741

    Article  CAS  Google Scholar 

  13. Lacivita E, Patarnello D, Stroth N et al (2012) Investigations on the 1-(2-biphenyl)piperazine motif: identification of new potent and selective ligands for the serotonin7 (5-HT7) receptor with agonist or antagonist action in vitro or ex vivo. J Med Chem 55:6375–6380

    Article  CAS  Google Scholar 

  14. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B 72:171–179

    Article  CAS  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  16. Bruno IJ, Cole JC, Edgington PR, Kessler M et al (2022) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr Sect B 58:389–397

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford

    Google Scholar 

  18. Gaulton A, Kale N, van Westen GJP et al (2015) A large-scale crop protection bioassay data set. Sci Data 2:91–93

    Article  Google Scholar 

  19. Schrödinger Release 2016–1: Glide 7.0, Schrödinger, LLC NY 2016

  20. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins Struct Funct Genet 52:609–623

    Article  CAS  Google Scholar 

  21. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4 : automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  22. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein - ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  23. Guagnano V, Furet P, Spanka C et al (2011) Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem 54:7066–7083

    Article  CAS  Google Scholar 

  24. Batson J, Toop HD, Redondo C et al (2017) Development of potent, selective SRPK1 inhibitors as potential topical therapeutics for neovascular eye disease. ACS Chem Biol 12:825–832

    Article  CAS  Google Scholar 

  25. Christopher JA, Brown J et al (2013) Biophysical fragment screening of the beta1-adrenergic receptor: identification of high affinity aryl piperazine leads using structure-based drug design. J Med Chem 56:3446–3455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Quantum mechanics calculations and docking calculations using AutoDock4 were performed using PL-Grid Infrastructure and resources provided by ACC Cyfronet AGH (Cracow, Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Kalinowska-Tłuścik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzęsikowska, K., Jabłoński, M. & Kalinowska-Tłuścik, J. Flat or angular? The impact of the nitrogen atom hybridization on the docking results for arylpiperazine derivatives as an example. Struct Chem 31, 823–829 (2020). https://doi.org/10.1007/s11224-019-01469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01469-9

Keywords

Navigation