Skip to main content
Log in

Electrophoresis of pH-regulated zwitterionic soft particle: a semi-analytical study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this article, we made a parametric study on the electrophoresis of charge-regulated soft particle. We consider a typical situation where the outer polyelectrolyte layer (PEL) carries zwitterionic functional group (e.g., succinoglycan). In addition, the inner rigid core is considered to be made of either silicon dioxide (SiO2) or titanium dioxide (TiO2), which produces zwitterionic surface charge. The mathematical model adopted here is based on the Poisson-Boltzmann equation for electric potential and Darcy-Brinkman and Stokes equation for the fluid flow across the surface PEL and electrolyte medium, respectively. In our current study, we have restricted ourselves with the low charge and weak electric field assumption. Using semi-analytical method, we solve the governing equations and electrophoretic mobility of core-shell particle is obtained. We have studied extensively the effects of the pH and concentration of bulk electrolyte, charge properties of the inner core surface and outer PEL, radius of the inner core, and thickness of outer PEL, on the overall electrophoretic behavior of the undertaken particle. We have also highlighted the change in sign in electrophoretic mobility by regulating the pertinent parameters governing the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sonohara R, Muramatsu N, Ohshima H, Kondo T (1995) Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem 5:273–277

    Google Scholar 

  2. von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der elektrizität und des magnetismus. Band II StationA are ströme, Barth, pp 366–428

  3. Hückel E (1924) Die kataphorese der kugel. Physik Z 25:204–210

    Google Scholar 

  4. Henry D (1931) The cataphoresis of suspended particles, Part 1 The equation of cataphoresis. Proceeding in Royal Society A 133:106–129

    CAS  Google Scholar 

  5. O’Brien RW, White LR (1978) The electrophoretic mobility of large colloid particles. Journal of Chemical Society Fraday, Transaction 2(74):1607–1626

    Google Scholar 

  6. Ohshima H, Healy TW, White LR (1983) Approximate analytical expression for the electrophoretic mobility of spherical colloidal particles the conductivity of their dillute suspensions. Journal of the Chemical Society, Faraday Trasactions 2: Molecular and Chemical Physics 79:1613–1628

    CAS  Google Scholar 

  7. Khair AS (2018) Strong deformation of the thick electric double layer around a charged particle during sedimentation or electrophoresis. Langmuir 34:876–885

    CAS  PubMed  Google Scholar 

  8. Bhattacharyya S, Gopmandal P (2011) Migration of a charged sphere at an arbitrary velocity in an axial electric field. Colloids Surf A Physicochem Eng Asp 390:86–94

    CAS  Google Scholar 

  9. Ohshima H (1997) Electrophoretic mobility of a polyelectrolyte-adsorbed particle: effect of segment density distribution. J Colloid Interface Sci 185:269–273

    CAS  PubMed  Google Scholar 

  10. Duval JFL, Wilkinson K, Van Leeuwen HP, Buffle J (2005) Humic substances are soft and permeable: evidence from their electrophoretic mobilities. Environ Sci Technol 39:6435–6445

    CAS  PubMed  Google Scholar 

  11. Donath E, Voigt E (1986) Streaming current and streaming potential on structured surface. J Colloid Interf Sci 109:122–139

    CAS  Google Scholar 

  12. Ohshima H, Kondo T (1986) Electrophoresis of large colloidal particles with surface charge layers. Position of the slipping plane and surface layer thickness. Colloid Polym Sci 264:1080–1084

    CAS  Google Scholar 

  13. Ohshima H, Kondo T (1987) Electrophoretic mobility and Donnan potential of a large colloidal particle with a surface charge layer. J Colloid Interface Sci 116(2):305–311

    CAS  Google Scholar 

  14. Ohshima H (1994) Electrophoretic mobility of soft particles. J Colloid Interf Sci 163:474–483

    CAS  Google Scholar 

  15. Ohshima H (1995) Electrophoresis of soft particle. J Colloid Interface Sci 62:189–235

    CAS  Google Scholar 

  16. Ohshima H (2002) Modified Hennry function for the electrophoretic mobility of a charged spherical colloidal particle covered with an ion-penetrable uncharged polymer layer. J Colloid Interf Sci 252:119–125

    CAS  Google Scholar 

  17. Ohshima H (2006) Electrophoresis of soft particles: analytic approximations. Electrophoresis 27:526–533

    CAS  PubMed  Google Scholar 

  18. Hill RJ, Saville DA, Russel WB (2003) Electrophoresis of spherical polymer coated colloidal particles. J Colloid Interface Sci 258:56–74

    CAS  Google Scholar 

  19. Hill RJ, Saville DA (2005) Exact solutions of the full electrokinetic model for soft spherical colloids: electrophoretic mobility. Colloids Surf A Physicochem Eng Asp 267:31–49

    CAS  Google Scholar 

  20. Hsu JP, Chen ZS, Tseng S (2009) Effect of electroosmotic flow on the electrophoresis of a membrane-coated sphere along the axis of a cylindrical pore. J Phys Chem B 113:7701–7708

    CAS  PubMed  Google Scholar 

  21. Yeh LS, Hsu JP (2011) Effects of double-layer polarization and counterions condensation on the electrophoresis of polyelectrolytes. Soft Matter 7:396–411

    CAS  Google Scholar 

  22. Ghoshal G, Bhattacharyya S, Gopmandal P, De S (2018) Nonlinear effects on electrophoresis of a soft particle and sustained solute release. Transp Porous Media 121:121–133

    CAS  Google Scholar 

  23. Chen YY, Hsu JP, Tseng S (2004) Electrophoresis of a pH-regulated, zwitterionic particles: effect of self-induced non uniform surface charge. J Colloid and Interface Sci 421:154–159

    Google Scholar 

  24. Wang N, Yee CP, Chen YY, Hsu JP, Tseng S (2013) Electrophoresis of a pH-regulated zwitterionic nanoparticle in a pH-regulated zwitterionic capillary. Langmuir 29:7162–7169

    CAS  PubMed  Google Scholar 

  25. Boutebba A, Milas M, Rinaudo M (1999) On the interchain associations in aqueous solutions of a succinoglycan polysaccharide. Int J Biol Macromol 24:319–327

    CAS  PubMed  Google Scholar 

  26. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycinemetabolism in cancer. Trends Biochem Sci 39:191–198

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr Sci 139:821–825

    CAS  Google Scholar 

  28. Zhang XG, Hsu JP, Chen ZS, Yeh LH, Ku MH, Tseng S (2010) Electrophoresis of a charge-regulated soft sphere in a charged cylindrical pore. J Phys Chem B 114:1621–1631

    CAS  PubMed  Google Scholar 

  29. Tseng S, Hsieh TH, Yeh LH, Wang N, Hsu JP (2013) Electrophoresis of a charge-regulated soft sphere: importance of effective membrance charge. Colloids Surf B: Biointerfaces 102:864–870

    CAS  PubMed  Google Scholar 

  30. Yeh LH, Hsu JP (2016) Electrophoretic behavior of pH -regulated soft biocolloids. Encyclopedia of Biocolloid and Biointerface Science 2V Set, pp 946–960

    Google Scholar 

  31. Gopmandal P, Bhattacharyya S, Banerjee M, Ohshima H (2016) Electrophoresis of soft particles with charged rigid core coated with pH-regulated polyelectrolyte layer. Colloid Polymer Science 294:1845–1856

    CAS  Google Scholar 

  32. Gopmandal P, Bhattacharyya S, Banerjee M, Ohshima H (2016) Electrophoresis of diffuse soft particles with dielectric charged rigid core grafted with charge regulated inhomogenous polymer segments. Colloids Surf A Physicochem Eng Asp 504:116–125

    CAS  Google Scholar 

  33. Ohshima H (2011) Electrophoretic mobility of a highly charged soft particle: relaxation effect. Colloids Surf A Physicochem Eng Asp 376:72–75

    CAS  Google Scholar 

  34. Ohshima H (2000) On the general expression for the electrophoretic mobility of a soft particle. J Colloid Interface Sci 228:190–193

    CAS  PubMed  Google Scholar 

  35. Ohshima H (2004) Electrophoretic mobility of a highly charged colloidal particle in a solution of general electrolytes. J Colloid Interface Sci 275:665–679

    CAS  PubMed  Google Scholar 

  36. Duval JFL, Ohshima H (2006) Electrophoresis of diffuse soft particles. Langmuir 22:3533–3546

    CAS  PubMed  Google Scholar 

  37. Gopmandal P, Bhattacharyya S, Ohshima H (2017) Importance of pH-regulated charge density on the electrophoresis of soft particles. Chem Phys 483:165–171

    Google Scholar 

  38. Matin MH, Ohshima H (1983) Viscosity renormalization in the Brinkman equation. Phys Fluids 26:2864

    Google Scholar 

  39. Matin MH, Ohshima H (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 460:361–369

    CAS  PubMed  Google Scholar 

  40. Hsu JP, Hsieh SH, Tseng S (2017) Diffusiophoresis of a pH-regulated polyelectrolyte in a pH-regulated nanochannel. Sensors Actuators B 252:1132–1139

    CAS  Google Scholar 

  41. Landau LD, Lifshitz EM (1966) Fluid mechanics. Pergamon, London

    Google Scholar 

  42. Ohshima H (2016) Approximate analytic expression for the pH-dependentelectrophoretic mobility of soft particles. Colloid Polym Sci 294:1997–2003

    CAS  Google Scholar 

  43. Lopez-Voita J, Mandal S, Delgado AV, Toca-Herrera JL, Moller M, Zanuttin F, Balestrino M, Krol S (2009) Electrophoretic characterization of gold nanoparticles functionalized with human serum albumin (HSA) and creatine. J Colloid Interface Sci 332:215–223

    Google Scholar 

  44. Duval JFL, Slaveykova VI, Hosse M, Buffle J, Wilkinson K (2006) Electrodynamic properties of succinoglycan as probed by fluroescence correlation spectroscopy, potentiometric titration, and capillary electrophoresis. J Biomacromol 7:2818–2826

    CAS  Google Scholar 

  45. Duval JFL, Werner C, Zimmermann R (2016) Electrokinetics of soft polymeric interphases with layered distribution of anionic and cationic charges. Curr Opin Colloid Inter Sci 24:1–12

    CAS  Google Scholar 

Download references

Funding

P. P. Gopmandal kindly acknowledge the financial support by Science and Engineering Research Board (SERB), Department of Science & Technology, Government of India, through the project grant (File no. MTR/2018/001021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha P. Gopmandal.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, Gopmandal, P.P., Sinha, R.K. et al. Electrophoresis of pH-regulated zwitterionic soft particle: a semi-analytical study. Colloid Polym Sci 298, 79–89 (2020). https://doi.org/10.1007/s00396-019-04580-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04580-9

Keywords

Navigation