Skip to main content
Log in

Pulse Electrodeposition of Cobalt/Zirconia Coatings: Oxidation and Electrical Performance of Ferritic Stainless Steel Interconnects

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To enhance oxidation resistance, avoid Cr evaporation and preserve suitable electrical behavior of Crofer 22 APU stainless steel as the interconnect of solid oxide fuel cells, Co/ZrO2 composite coatings were applied on Crofer 22 APU using the pulse electroplating technique. Moreover, isothermal and cyclic oxidation measurements were used to investigate oxidation resistance. In addition, oxidation rates were estimated and microstructures of the coatings were investigated before and after the oxidation tests. According to the results, the coated specimen had a lower oxidation rate constant than the uncoated specimen after 500 h of oxidation. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction analysis showed that the oxide scale formed on the coated steel after oxidation was composed of two layers. The results also showed that the inner layer is thinner and contains Cr and O, while the outer layer is composed of Co, Mn, Cr and O. Furthermore, ZrO2 particles were also found in the outer oxide layer, following the oxidation tests. The Co/ZrO2-coated steel has a thinner inner oxide layer and a lower oxidation rate than the uncoated steel. Additionally, the area-specific resistance (ASR) of the steels with and without coating was also estimated as a function of temperature and time. The results showed that the growth rate of Cr2O3 layer decreased after applying the Co/ZrO2 composite coating, which resulted in lower ASR value. Moreover, after 500 h of oxidation at 800 °C, the ASR value of the Co/ZrO2-coated and uncoated steels was 13 mΩ cm2 and 27.8 mΩ cm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Cheng and J. Sun, International Journal of Hydrogen Energy44, 18415–18424 (2019).

    Article  CAS  Google Scholar 

  2. E. Zanchi, et al., Journal of the European Ceramic Society39, 3768–3777 (2019).

    Article  CAS  Google Scholar 

  3. S. Geng, Y. Pan, G. Chen and F. Wang, International Journal of Hydrogen Energy44, 9400–9407 (2019).

    Article  CAS  Google Scholar 

  4. C. Jia, et al., Journal of Alloys and Compounds787, 1327–1335 (2019).

    Article  CAS  Google Scholar 

  5. Q. Zhao, S. Geng, G. Chen and F. Wang, International Journal of Hydrogen Energy44, 13744–13756 (2019).

    Article  CAS  Google Scholar 

  6. P. F. You, et al., Results in Physics12, 1598–1605 (2019).

    Article  Google Scholar 

  7. B.-K. Park, et al., International Journal of Hydrogen Energy38, 12043–12050 (2013).

    Article  CAS  Google Scholar 

  8. S.-I. Lee, et al., Electrochemical Society161, 1389–1394 (2014).

    Article  Google Scholar 

  9. B. K. Kim, D.-I. Kim and K.-W. Yi, Corrosion Science130, 45–55 (2018).

    Article  CAS  Google Scholar 

  10. S. Geng, S. Qi, D. Xiang, S. Zhu and F. Wang, Journal of Power Sources215, 274–278 (2012).

    Article  CAS  Google Scholar 

  11. Y. Lv, S. Geng and Z. Shi, Journal of Alloys and Compounds726, 269–275 (2017).

    Article  CAS  Google Scholar 

  12. N. S. Waluyo, et al., Solid State Electrochemistry18, 445–452 (2014).

    Article  CAS  Google Scholar 

  13. V. I. Gorokhovsky, et al., Journal of the Electrochemical Society153, A1886–A1893 (2006).

    Article  CAS  Google Scholar 

  14. K. Przybylski, T. Brylewski, E. Durda, R. Gawel and A. Kruk, Thermal Analysis and Calorimetry116, 2014 (825–834).

    Article  CAS  Google Scholar 

  15. A. Harthøj, T. Holt and P. Møller, Journal of Power Sources281, 227–237 (2015).

    Article  Google Scholar 

  16. P. F. You, X. Zhang, H. L. Zhang, H. J. Liu and C. L. Zeng, International Journal of Hydrogen Energy43, 7492–7500 (2018).

    Article  CAS  Google Scholar 

  17. K. Yan, H. Guo and S. Gong, Corrosion Science83, 335–342 (2014).

    Article  CAS  Google Scholar 

  18. Y. Yan, R. Bateni, J. Harris and O. Kesler, Surface and Coatings Technology272, 415–427 (2015).

    Article  CAS  Google Scholar 

  19. F. Saeidpour, M. Zandrahimi and H. Ebrahimifar, International Journal of Hydrogen Energy44, 3157–3169 (2019).

    Article  CAS  Google Scholar 

  20. J. C. W. Mah, A. Muchtar, M. R. Somalu and M. J. Ghazali, International Journal of Hydrogen Energy42, 9219–9229 (2017).

    Article  CAS  Google Scholar 

  21. Y. Guo, Y. Zhao, S. Wang, C. Jiang and J. Zhang, Fuel215, 756–765 (2018).

    Article  CAS  Google Scholar 

  22. S. C. Santos, Rheological behaviour of yttria aqueous suspensions for impregnation method, in International Ceramics Congress, eds. C. Yamagata and S. R. H. Mello Castanho (2014).

  23. H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals84, 329–344 (2015).

    Article  CAS  Google Scholar 

  24. H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals84, 129–149 (2015).

    Article  CAS  Google Scholar 

  25. J. W. Stevenson, Z. G. Yang, G. G. Xia, Z. Nie and J. D. Templeton, Journal of Power Sources231, 256–263 (2013).

    Article  CAS  Google Scholar 

  26. S. N. Hosseini, F. Karimzadeh, M. H. Enayati and N. M. Sammes, Solid State Ionics289, 95–105 (2016).

    Article  CAS  Google Scholar 

  27. H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals - OXIDAT METAL75, 125–141 (2011).

    Article  CAS  Google Scholar 

  28. F. Cheng, J. Cui, L. Wang, S. Li and S. Juncai, International Journal of Hydrogen Energy42, 12477–12484 (2017).

    Article  CAS  Google Scholar 

  29. F. Saeidpour, M. Zandrahimi and H. Ebrahimifar, Corrosion Science153, 200–212 (2019).

    Article  CAS  Google Scholar 

  30. S. T. Hashemi, A. M. Dayaghi, M. Askari and P. E. Gannon, Materials Research Bulletin102, 180–185 (2018).

    Article  CAS  Google Scholar 

  31. C. Shanthi, S. Barathan, R. Jaiswal, R. M. Arunachalam and S. Mohan, Materials Letters62, 4519–4521 (2008).

    Article  CAS  Google Scholar 

  32. G. B. Skinner and H. L. Johnston, The Journal of Chemical Physics21, 1383 (1953).

    Article  CAS  Google Scholar 

  33. A. M. Dayaghi, M. Askari and P. Gannon, Surface and Coatings Technology206, 3495–3500 (2012).

    Article  CAS  Google Scholar 

  34. J. G. Grolig, J. Froitzheim and J.-E. Svensson, Electrochimica Acta184, 301–307 (2015).

    Article  CAS  Google Scholar 

  35. H. Falk-Windisch, J. Claquesin, M. Sattari, J.-E. Svensson and J. Froitzheim, Journal of Power Sources343, 1–10 (2017).

    Article  CAS  Google Scholar 

  36. E. Tondo, M. Boniardi, D. Cannoletta, M. F. De Riccardis and B. Bozzini, Journal of Power Sources195, 4772–4778 (2010).

    Article  CAS  Google Scholar 

  37. E. M. Dela Pena and S. Roy, Surface and Coatings Technology339, 101–110 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Saeidpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidpour, F., Zandrahimi, M. & Ebrahimifar, H. Pulse Electrodeposition of Cobalt/Zirconia Coatings: Oxidation and Electrical Performance of Ferritic Stainless Steel Interconnects. Oxid Met 93, 87–104 (2020). https://doi.org/10.1007/s11085-019-09948-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09948-4

Keywords

Navigation