Skip to main content
Log in

Characterization of Slag Flow in Fixed Packed Bed of Coke Particles

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The static and dynamic holdups of liquid slag flow in a packed coke bed were investigated at a temperature of 1723 K by using the three-dimensional combined discrete element method and a computational fluid dynamics model. Coke particles with three different diameters (8, 14, and 22 mm) were considered. The simulation results for the static holdup agreed well with previously reported experimental results and the prediction values suggested by Jang et al. The simulation results for the dynamic holdup were compared with the values predicted using several water-model-based correlations. The simulation results for the dynamic holdup were slightly lower than the values predicted using the Fukutake model and the Otake and Okada model and were significantly higher than those predicted using the model proposed by Bando et al. The summation of the static and the dynamic holdups yielded the total holdup. With the increase of the modified capillary number (or particle size), the total holdup decreased monotonically, mainly owing to the considerable decrease in the static holdup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Yagi: ISIJ Int., 1993, vol. 33, pp. 619–39.

    CAS  Google Scholar 

  2. S. Natsui, T. Kikuchi, and R.O. Suzuki: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2395–413.

    CAS  Google Scholar 

  3. T. Fukutake and V. Rajakumar: Trans. ISIJ, 1982, vol. 22, pp. 355–65.

    Google Scholar 

  4. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science Publishers, New York, 1987.

    Google Scholar 

  5. S. Ueda, T. Kon, T. Miki, S. Kim, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 2098–104.

    CAS  Google Scholar 

  6. S. Ghosh, N.N. Viswanathan, and N.B. Ballal: Steel Res. Int., 2017, vol. 88, pp. 1–25.

    Google Scholar 

  7. D.D. Geleta and J. Lee: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3594–602.

    CAS  Google Scholar 

  8. M. HayasHi, S. Sukenaga, K. Ohno, S. Ueda, K. SunaHara, and N. SaitO: Tetsu-to-Haganesu, 2014, vol. 100, pp. 211–26.

    CAS  Google Scholar 

  9. H.L. George, B.J. Monaghan, R.J. Longbottom, S.J. Chew, and P.R. Austin: ISIJ Int., 2013, vol. 53, pp. 1172–1179.

    CAS  Google Scholar 

  10. H. Kawabata, Z. Liu, F. Fujita, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1466–73.

    CAS  Google Scholar 

  11. H. Kawabata, K. Shinmyou, T. Harada, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1474–81.

    CAS  Google Scholar 

  12. G.S. Gupta and S. Bhattacharyya: ISIJ Int., 2003, vol. 43, pp. 1927–35.

    CAS  Google Scholar 

  13. W. Xiong, X.G. Bi, G.Q. Wang, and F. Yang: Metall. Mater. Trans. B, 2012, vol. 43, pp. 562–70.

    CAS  Google Scholar 

  14. T. Sugiyama, T. Nakagawa, H. Sibaike, and Y. Oda: Tetsu-to-Hagane, 1987, vol. 73, pp. 242–9.

    Google Scholar 

  15. K. Nishioka, D. Fujiwara, K. Ohno, T. Maeda, and M. Shimizu: ISIJ Int., 2010, vol. 50, pp. 1016–22.

    CAS  Google Scholar 

  16. D. Jang, M. Shin, J.S. Oh, H.-S. Kim, S.H. Yi, and J. Lee: ISIJ Int., 2014, vol. 54, pp. 1251–5.

    CAS  Google Scholar 

  17. H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 820–6.

    CAS  Google Scholar 

  18. K. Saito, K. Ohno, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2006, vol. 46, pp. 1783–90.

    CAS  Google Scholar 

  19. W.M. Husslage, A.M. Reuter, R.H. Heerema, T. Bakker, and A.G.S. Steeghs: Metall. Mater. Trans. B, 2005, vol. 36, pp. 765–76.

    Google Scholar 

  20. A.S. Mehta and V. Sahajwalla: Scand. J. Metall., 2000, vol. 29, pp. 17–29.

    CAS  Google Scholar 

  21. I.-H. Jeong, H.-S. Kim, and Y. Sasaki: ISIJ Int., 2013, vol. 53, pp. 2090–8.

    CAS  Google Scholar 

  22. H. Ohgusu, Y. Sassa, Y. Tomita, K. Tanaka, and M. Hasegawa: Tetsu-to-Hagane, 1992, vol. 78, pp. 1164–70.

    CAS  Google Scholar 

  23. I. Jeong, H. Kim, and Y. Sazaki: Tetsu-to-Hagane, 2014, vol. 100, pp. 925–34.

    CAS  Google Scholar 

  24. J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.

    CAS  Google Scholar 

  25. J. Oh and J. Lee: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1808–13.

    CAS  Google Scholar 

  26. S. Natsui, T. Kikuchi, R.O. Suzuki, T. Kon, S. Ueda, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 1259–66.

    CAS  Google Scholar 

  27. T. Kon, S. Natsui, S. Ueda, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 1284–90.

    CAS  Google Scholar 

  28. T. Kon, S. Natsui, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1565–73.

    CAS  Google Scholar 

  29. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–8.

    CAS  Google Scholar 

  30. W.J. Yang, Z.Y. Zhou, and A.B. Yu: Chem. Eng. J., 2015, vol. 278, pp. 339–52.

    CAS  Google Scholar 

  31. S. Natsui, H. Nogami, S. Ueda, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 41–50.

    CAS  Google Scholar 

  32. Y. Niwa, T. Sumigama, A. Maki, S. Nagano, A. Sakai, and M. Sakurai: Tetsu-to-Hagane, 1990, vol. 76, pp. 337–44.

    CAS  Google Scholar 

  33. N. Standish: Chem. Eng. Sci., 1968, vol. 23, pp. 51–6.

    CAS  Google Scholar 

  34. T. Otake and K. Okada: Chem. Eng., 1953, vol. 17, pp. 176–84.

    CAS  Google Scholar 

  35. Y. Bando, S. Hayashi, A. Matsubara, and M. Nakamura: ISIJ Int., 2005, vol. 45, pp. 1461–5.

    CAS  Google Scholar 

  36. S. Natsui, S. Ueda, Z. Fan, and N. Andersson: ISIJ Int., 2010, vol. 50, pp. 207–14.

    CAS  Google Scholar 

  37. T. Nouchi, T. Sato, M. Sato, K. Takeda, and T. Ariyama: ISIJ Int., 2005, vol. 45, pp. 1426–31.

    CAS  Google Scholar 

  38. P. Cundall and O. Struck: Geotechnique, 1979, vol. 29, pp. 47–65.

    Google Scholar 

  39. T.T. Y. Tsuji, T. Kawaguchi: Powder Technol., 1993, vol. 77, pp. 79–87.

    CAS  Google Scholar 

  40. A.T. Adema, Y.X. Yang, and R. Boom: ISIJ Int., 2010, vol. 50, pp. 954–61.

    CAS  Google Scholar 

  41. Y. Yu and H. Saxen: ISIJ Int., 2012, vol. 52, pp. 788–96.

    CAS  Google Scholar 

  42. Y. Yu, A. Westerlund, T. Paananen, and H. Saxén: ISIJ Int., 2011, vol. 51, pp. 1050–6.

    CAS  Google Scholar 

  43. X.F. Dong, A.B. Yu, J.M. Burgess, D. Pinson, S. Chew, and P. Zulli: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 214–26.

    CAS  Google Scholar 

  44. S. Matsuhashi, H. Kurosawa, S. Natsui, T. Kon, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1990–9.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (20172010106300, Development of hybrid ironmaking processes for lower CO2 emissions) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 9 May 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geleta, D.D., Siddiqui, M.I.H. & Lee, J. Characterization of Slag Flow in Fixed Packed Bed of Coke Particles. Metall Mater Trans B 51, 102–113 (2020). https://doi.org/10.1007/s11663-019-01750-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01750-6

Navigation