Skip to main content
Log in

Arsenic and phosphorus in feldspar framework: sanidine–filatovite solid solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The influence of pentavalent arsenic and phosphorus on crystal chemical features of the feldspar framework was studied on the minerals belonging to the sanidine–filatovite solid-solution series from fumarolic exhalations of the Tolbachik volcano (Kamchatka, Russia). The reported feldspars demonstrate the first example of natural continuous solid solution between silicate and arsenate. The content of As2O5 varies from 0.0 to 45 wt% along with the highest phosphorus content found in natural feldspars: up to 5 wt% P2O5. The major substitution schemes in the studied feldspars are Al3+  + M5+  → 2Si4+ and M2+  + M5+  → Al3+  + Si4+, where M2+ = Zn and Cu and M5+ = As and P. The crystal structures of four samples with empirical formulae K0.95[(Si2.98Al0.93Fe0.08As0.02)Ʃ4.01O8] (space group C2/m), (K0.91Na0.06Ca0.03)Ʃ1.00[(Si2.81Al1.14As0.03P0.03Fe0.01)Ʃ4.02O8] (C2/m), K0.82[(Al1.92As1.11Si0.89Zn0.05Fe0.03Cu0.02P0.01)Ʃ4.03O8] (I2/c), K0.99[(Si1.87Al1.51As0.53P0.05Fe0.02Cu0.01)Ʃ3.99O8] (I2/c) were studied. The phase transition in the sanidine–filatovite solid-solution series is C2/m → I2/c. This is caused by the change of the Al:(Si + As) ratio from 1:3 in sanidine to 1:1 in filatovite along with significant ordering of Al, Si and As in the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aliatis et al (2015) A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). J Raman Spectr 46:501–508

    Google Scholar 

  • Bendel V, Schmidt BC (2008) Raman spectroscopic characterisation of disordered alkali feldspars along the join KAlSi3O8–NaAlSi3O8: application to natural sanidine and anorthoclase. Eur J Mineral 20:1055–1065

    Google Scholar 

  • Bokiy GB, Borutsky BE (eds) (2003) Minerals. Reference book. Vol. V: Tectosilicates. Pt. 1: Silicates with Interrupted Frameworks and Feldspars. Nauka Publishing, Moscow. (in Russian)

  • Brown WL, Parsons I (1989) Alkali feldspars: ordering rates, phase transformations and behavior diagrams for igneous rocks. Miner Mag 53:25–42

    Google Scholar 

  • Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO 146(3):104–107 (in Russian)

    Google Scholar 

  • Broska I, Williams CT, Uher P, Konecny P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15

    Google Scholar 

  • Christy AG (2018) Quantifying lithophilicity, chalcophilicity and siderophilicity. Eur J Mineral 30:193–204

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2001) Rock-Forming minerals. In: Framework silicates: feldspars. The Geological Society, London

  • Ferguson RB, Ball NA, Cerny P (1991) Structure refinement of an adularian end-member high sanidine from the Buck Claim pegmatite, Bernic Lake, Manitoba. Can Miner 29:543–552

    Google Scholar 

  • Filatov SK, Krivovichev SV, Burns PC, Vergasova LP (2004) Crystal structure of filatovite, K(Al, Zn)2(As, Si)2O8, the first arsenate of the feldspar group. Eur J Mineral 16:537–543

    Google Scholar 

  • Finney JJ, Bailey SW (1964) Crystal structure of an authigenic maximum microcline. Z Kristallogr 119:413–426

    Google Scholar 

  • Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can Mineral 46:1477–1500

    Google Scholar 

  • Fryda J, Breiter K (1995) Alkali feldspars as a main phosphorus reservoirs in rare-metal granites: three examples from the Bohemian massif (Czech Republic). Terra Nova 7:315–320

    Google Scholar 

  • Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst B71:562–578

    Google Scholar 

  • Grew ES, Yates MG, Belakovskiy DI, Rouse RC, Su SC, Marquez N (1994) Hyalotekite from reedmergnerite-bearing peralkaline pegmatite, Dara-i-Pioz, Tajikistan and from Mn skarn, Långban, Värmland, Sweden: a new look at an old mineral. Mineral Mag 58:285–297

    Google Scholar 

  • Griffen DA, Ribbe PH (1976) Refinement of the crystal structure of celsian. Am Mineral 61:414–418

    Google Scholar 

  • Gualtieri AF (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. J Appl Cryst 33:267–278

    Google Scholar 

  • Kontak DJ, Martin RF, Richard L (1996) Patterns in phosphorus enrichment in alkali feldspar, South Mountain batholith, Nova Scotia, Canada. Eur J Mineral 8:805–824

    Google Scholar 

  • Kotelnikov AR, Ananiev VV, Kovalsky AM, Suk NI (2011) Synthesis of phosphorus- and arsenic-bearing framework silicates similar to feldspar. Vest Nauk Zem RAN 3:6047

    Google Scholar 

  • Kroll H, Bambauer HV, Schirmer V (1980) The high albite-monalbite and analbite-monalbite transitions. Am Mineral 65:1192–1211

    Google Scholar 

  • Kroll H, Ribbe PH (1987) Determining (Al, Si) distribution and strain in alkali feldspars using lattice parameters and diffraction-peak positions: a review. Am Mineral 72(5–6):491–506

    Google Scholar 

  • Kuehner SM, Joswiak DJ (1996) Naturally occurring ferric iron sanidine from the Leucite Hills lamproite. Am Mineral 81:229–237

    Google Scholar 

  • Lacroix A (1912) Note pre´liminaire sur quelques mine´raux de Madagascar dont plusieurs peuvent tre utilise´s comme gemmes. Com Renl’Ac Sci Paris 155:672–677

    Google Scholar 

  • Laves F (1960) Al/Si-Verteilungen, Phasen-Transformationen und Namen der Alkalifeldspate. Z Kristallogr 113:265–296

    Google Scholar 

  • Linthout K, Lustenhouwer W (1993) Ferrian high sanidine in a lamproite from Cancarix, Spain. Mineral Mag 57:289–299

    Google Scholar 

  • London D, Cerny P, Loomis JL, Pan JJ (1990) Phosphorus in alkali feldspars of rare-element granitic pegmatites. Can Miner 28:771–786

    Google Scholar 

  • London D (1992) Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminous granites, pegmatites and rhyolites. Am Mineral 77:126–145

    Google Scholar 

  • London D, Wolf MB, Morgan GB, Garrido MG (1999) Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos Badajoz, Spain. J Petrol 40:215–240

    Google Scholar 

  • Löwenstein W (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96

    Google Scholar 

  • Malcherek T, Carpenter MA, Kroll H, Salje EKH (1999) Cation ordering in BaAl2Ge2O8-feldspar: implications for the I-1 C-1 phase transition in anorthite. Phys Chem Miner 26:354–366

    Google Scholar 

  • McKeown DA (2005) Raman spectroscopy and vibrational analyses of albite: from 25°C through the melting temperature. Am Mineral 90:1506–1517

    Google Scholar 

  • McConnel JDC (1971) Electron optical study of phase transformations. Mineral Mag 38:1–20

    Google Scholar 

  • Megaw HD (1973) Crystal Structures: a Working Approach. W.B. Saunders Co., London

    Google Scholar 

  • Megaw HD (1974) The architecture of the feldspars. In: MacKenzie WS, Zussman J (eds) The Feldspars. Manchester University Press, Manchester

  • Onorato E, Penta M, Sgarlata F (1963) Struttura del sanidino. Per Miner 32:1–34

    Google Scholar 

  • Parsons I (ed) (1994) Feldspars and their reactions. Proceedings of the NATO Advanced Study Institute on Feldspars and Their Reactions Edinburgh, United Kingdom

  • Pekov IV, Koshlyakova NN, Zubkova NV, Lykova IS, Britvin SN, Yapaskurt VO, Agakhanov AA, Shchipalkina NV, Turchkova AG, Sidorov EG (2018) Fumarolic arsenates—a special type of arsenic mineralization. Eur J Mineral 30(2):305–322

    Google Scholar 

  • Petriček V, Duŝek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229(5):345–352

    Google Scholar 

  • Ribbe PH (1983) The chemistry, structure and nomenclature of feldspars. Rev Mineral 2:1–20

    Google Scholar 

  • Salje E (1985) Thermodynamics of sodium feldspar: 1. Order parameter treatment and strain induced coupling effects. Phys Chem Miner 12:93–98

    Google Scholar 

  • Scambos TA, Smyth JR, McCormick TC (1987) Crystal-structure refinement of high sanidine from the upper mantle. Am Mineral 72:973–978

    Google Scholar 

  • Serafimova EK (1992) Mineral paragenesis of volcanic exhalations. Post-Eruptive Mineral Formation on Active Volcanoes of Kamchatka. P I. Far Eastern Branch of RAS, Vladivostok, 31–52 (in Russian)

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystal B25:925–946

    Google Scholar 

  • Shchipalkina NV, Pekov IV, Zubkova NV, Koshlyakova NN, Sidorov EG (2019) Natural forsterite strongly enriched by arsenic and phosphorus: chemistry, crystal structure, crystal morphology and zonation. Phys Chem Mineral 46:889–898

    Google Scholar 

  • Simpson DR (1977) Aluminium phosphate variants of feldspar. Am Mineral 62:351–355

    Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals 1 crystal structures, physical, chemical and microstructural properties. Springer, Berlin

    Google Scholar 

  • Tribaudino M, Benna P, Bruno E (1998) Structural variations induced by thermal treatment in lead feldspar (PbAl2Si2O8). Am Mineral 83:159–166

    Google Scholar 

  • Vergasova LP, Filatov SK (2016) A study of volcanogenic exhalation mineralization. J Volcanol Seismol 10:71–85

    Google Scholar 

  • Vergasova LP, Krivovichev SV, Britvin SN, Burns PC, Ananiev VV (2004) Filatovite, K[(Al, Zn)2(As, Si)2O8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur J Mineral 16:533–536

    Google Scholar 

  • Weitz G (1972) Die Struktur des Sanidins bei verschiedenen Ordnungsgraden. Z Kristallogr 136:418–426

    Google Scholar 

  • Yazdani MR, Tuurijarvi T, Bhatnagar A, Vahala R (2016) Adsorptive removal of arsenic (V) from aqueous phase by feldspars: kinetics, mechanism, and thermodynamic aspects of adsorption. J Mol Liq 214:149–156

    Google Scholar 

  • Yazdani MR, Bhatnagar A, Vahala R (2017) Synthesis, characterization and the exploration of nano-TiO2/feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chem Eng J 316:370–382

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for valuable comments. This work was supported by the Russian Science Foundation, Grant no. 19–17-00050. Powder XRD study was carried out with the technical support by the SPbSU X-Ray Diffraction Resource Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda V. Shchipalkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (CIF 205 kb)

Supplementary file2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Pekov, I.V., Britvin, S.N. et al. Arsenic and phosphorus in feldspar framework: sanidine–filatovite solid solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. Phys Chem Minerals 47, 1 (2020). https://doi.org/10.1007/s00269-019-01067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-019-01067-5

Keywords

Navigation