Skip to main content
Log in

Decarburization of 60Si2MnA in Atmospheres Containing Different Levels of Oxygen, Water Vapour and Carbon Dioxide at 700–1000 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The decarburization behaviour of 60Si2MnA in atmospheres containing 0–21% O2, < 20 ppm–17%H2O, and with or without 8%CO2, at 700–1000 °C, was investigated. The new findings of the current study were: (a) severe decarburization was associated with the formation of wüstite (FeO) scale on the steel surface, (b) the carbon activity at the steel–FeO interface was most likely determined by the reaction equilibrium between FeO and dissolved carbon in steel, (c) when a ferrite layer was able to form, the decarburization tendency was determined by the relative carbon permeability (defined as the product of carbon concentration difference at the two interfaces of the ferrite layer and carbon diffusivity) through the ferrite layer, and therefore, (d) the decarburization tendency at 800 °C was greater than those at 700 and 900 °C as the relative carbon permeability at 800 °C was the greatest. If FeO was absent when heating in dry O2-containing gases, however, possibly as a result of the formation of a SiO2 layer at the steel surface, decarburization was very much alleviated or avoided. At 1000 °C, the decarburization tendency was alleviated even when FeO was able to form because formation of a ferrite layer was not possible and carbon diffusivity in austenite was much lower than that in ferrite. A preformed oxide scale was effective in providing decarburization protection only when the steel was exposed to dry O2-containing atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chinese National Standard, GB/T 1222-2016: Spring Steels, 2016.

  2. A29/A29M-05, “Standard specification for steel bars, carbon and alloy, hot-wrought, general requirement for”, ASTM International 2006.

  3. BS EN 10089:2002, Hot rolled steels for quenched and tempered springs – Technical delivery conditions, BSi British Standards, 2002.

  4. A. S. Kenneford and G. C. Ellis, Journal of Iron and Steel Institute164, 265 (1950).

    CAS  Google Scholar 

  5. M. Assefpour-Dezfuly and A. Brownrigg, Metallurgical Transactions A20A, 1951 (1989).

    Article  CAS  Google Scholar 

  6. A. Brownrigg and T. Sritharan, Material Forum10, 58 (1987).

    CAS  Google Scholar 

  7. M. J. Gildersleeve, Materials Science and Technology7, 307 (1991).

    Article  CAS  Google Scholar 

  8. M. Nomura, H. Morimoto and M. Toyama, ISIJ International40, 619 (2000).

    Article  CAS  Google Scholar 

  9. D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferi, W. Krieger and E. Kozeschnik, Steel Research International80, 298 (2009).

    CAS  Google Scholar 

  10. D. Li, D. Anghelina, D. Burzic, W. Krieger and E. Kozeschnik, Steel Research International80, 304 (2009).

    CAS  Google Scholar 

  11. C. Zhang, Y. Liu, L. Zhou, C. Jiang and J. Xiao, International Journal of Minerals, Metallurgy and Materials19, 116 (2012).

    Article  CAS  Google Scholar 

  12. C. Zhang, L. Zhou and Y. Liu, International Journal of Minerals, Metallurgy and Materials20, 720 (2013).

    Article  CAS  Google Scholar 

  13. S. Choi and S. Zwaag, ISIJ International52, 549 (2012).

    Article  CAS  Google Scholar 

  14. S. Choi and Y. Lee, ISIJ International54, 1682 (2014).

    Article  CAS  Google Scholar 

  15. X. Shi, L. Zhao, W. Wang, B. Zeng, L. Zhao, Y. Shan, M. Shen and K. Yang, Transactions of Materials and Heat Treatment34(7), 47 (2013) (in Chinese).

    Google Scholar 

  16. Y. Liu, W. Zhang, Q. Tong and L. Wang, ISIJ International54, 1920 (2014).

    Article  CAS  Google Scholar 

  17. F. Zhao, C. Zhang, Q. Xiu, Y. Tan, S. Zhang and Y. Liu, Materials Science Forum817, 132 (2015).

    Article  Google Scholar 

  18. Y. Liu, W. Zhang, Q. Tong and Q. Sun, International Journal of Iron and Steel Research23, 1316 (2016).

    Article  Google Scholar 

  19. F. Zhao, C. L. Zhang and Y. Z. Liu, Archives of Metallurgy and Materials61, 1715 (2016).

    Article  Google Scholar 

  20. W. A. Pennington, Transactions of the American Society for Metals37, 48 (1946).

    Google Scholar 

  21. N. Birks, Decarburization, The Iron and Steel Institute Publication 133, London, 1969, pp. 1.

  22. N. Birks and W. Jackson, Journal Iron and Steel Institute208, 81 (1970).

    CAS  Google Scholar 

  23. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, First Edition, Edward Arnold, London, 1983, pp 175; Second Edition, Cambridge University Press, Cambridge, UK, 2006, pp. 151–162.

  24. L. S. Darken, Transactions of the Metallurgical Society of AIME180, 430 (1949); H. K. D. H. Bhadeshia, Metallurgical and Materials Transactions A41A, 1605 (2010).

  25. R. Y. Chen, Oxidation of Metals89, 1 (2018).

    Article  CAS  Google Scholar 

  26. W. E. Jominy and D. W. Murphy, Transaction of the American Society for Steel Treating18, 19 (1930).

    Google Scholar 

  27. A. Rahmel and J. Tobolski, Werkstoffe und Korrosion16, 662 (1965).

    Article  CAS  Google Scholar 

  28. A. Rahmel, Werkstoffe und Korrosion16, 837 (1965).

    Article  CAS  Google Scholar 

  29. M. Fukumoto, S. Maeda, S. Hayashi and T. Narita, Tetsu-to-Hagané86, 526 (2000).

    Article  CAS  Google Scholar 

  30. A. A. Mouayd, A. Koltsov, E. Sutter and B. Tribollet, Materials Chemistry and Physics143, 996 (2014).

    Article  Google Scholar 

  31. J. Baud, A. Ferrier, J. Manenc and J. Bénard, Oxidation of Metals9, 69 (1975).

    Article  CAS  Google Scholar 

  32. K. Sachs, Decarburization, The Iron and Steel Institute Publication 133, London, 1969, pp. 13.

  33. R. Beaumont, Decarburization, The Iron and Steel Institute Publication 133, London, 1969, pp. 34.

  34. E 1077 – 01, “Standard Test Methods for Estimating the Depth of Decarburization of Steel Specimens”, ASTM International, PA, United States, 2001.

  35. G. F. Vander Voort, Advanced Materials & Processes, 173(2), 22 (2015).

    Google Scholar 

  36. Australian Standard®, “Carbon and low alloy steel – measurement of decarburization”, AS 2003 – 1991, Reconfirmed 2016, Standards Australia, NSW, Australia

  37. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, Fifth ed, (Pergamon Press, Oxford, 1979), pp. 378–384.

    Google Scholar 

  38. W. Cao, S. -L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer and W. A. Oates, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry33, 328 (2009).

  39. PanFe, Thermodynamic database for Fe-based alloys, CompuTherm, LLC: Middleton WI 53562, USA, 2019.

  40. Y. R. Chen, Y. Liu and X. Xu, Oxidation of 60Si2MnA steel in atmospheres containing different levels of oxygen, water vapour and carbon dioxide at 700–1000 °C, Oxidation of Metals, 2019. https://doi.org/10.1007/s11085-019-09944-8.

    Article  Google Scholar 

  41. A. D. Pelton, P. Koukkari, R. Pajarre and G. Eriksson, Journal Chemical Thermodynamics72, 16 (2014).

    Article  CAS  Google Scholar 

  42. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations – Their Thermodynamic Basis, 2nd ed, (Cambridge University Press, Cambridge UK, 2008), pp. 311–315.

    Google Scholar 

  43. F. D. Richardson and J. H. E. Jeffes, Journal of Iron Steel Institute160, 261 (1948).

    CAS  Google Scholar 

  44. J. A. Lobo and G. H. Gaiger, Metallurgical Transactions A.7A, 1347 (1976).

    Article  CAS  Google Scholar 

  45. T. Ellis, I. M. Davidson and C. Bodsworth, Journal of Iron Steel Institute201, 582 (1963).

    CAS  Google Scholar 

  46. M. A. Krishtal, Diffusion Processes in Iron Alloys, Israel Program for Scientific Translation, Jerusalem, 1970.

  47. Y. R. Chen, F. Zhang and Y. Liu, Unpublished results submitted to Metallurgical and Materials Transactions A, October 2019.

  48. G. Parrish and G. S. Harper, Production Gas Carburizing, (Pergamon Press, Oxford, 1985), p. 116.

    Google Scholar 

  49. W. C. Leslie, The Physical Metallurgy of Steels, (Hemisphere Publishing Corporation, Washington and McGraw-Hill Book Company, New York, 1981).

    Google Scholar 

  50. A. Atkinson, Corrosion Science22, 87 (1982).

    Article  CAS  Google Scholar 

  51. R. Collin, S. Gunnarson and D. Thulin, Journal of Iron Steel Institute210, 785 (1972).

    CAS  Google Scholar 

  52. T. Wada, H. Wada, J. F. Elliott and J. Chipman, Metallurgical Transactions3, 1657 (1972).

    Article  CAS  Google Scholar 

  53. D. R. Poirier, Transactions of the Metallurgical Society of AIME242, 685 (1968).

    Google Scholar 

  54. R. P. Smith, Transactions of the Metallurgical Society of AIME224, 105 (1962).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng R. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Determination of the Relative Carbon Permeability Through the Ferrite Layer [25]

Appendix 1: Determination of the Relative Carbon Permeability Through the Ferrite Layer [25]

In determining the equilibrium carbon composition at the FeO–steel interface, it was assumed that the dissolved carbon in steel, [C], could react with FeO via the following reactions:

$$ \left[ {\text{C}} \right] + 2{\text{FeO}} = 2{\text{Fe}} + {\text{CO}}_{2} $$
(15)
$$ \left[ {\text{C}} \right] + {\text{FeO}} = {\text{Fe}} + {\text{CO}} $$
(16)

and the overall reaction of these reactions was:

$$ {\text{CO}} + {\text{FeO}} = {\text{Fe}} + {\text{CO}}_{2} $$
(17)

Using the published data [37, 43], the standard Gibbs free energy of formation of Reaction (17) was given by

$$ \Delta G_{17}^{o} = - 22800 + 24.267T\left( {{\text{J/mole}}\;{\text{of}}\;{\text{CO}}} \right) $$
(18)

When Reaction (17) reached equilibrium,

$$ \frac{{P_{\text{CO}} }}{{P_{{{\text{CO}}_{2} }} }} = { \exp }\left( {\frac{ - 22800 + 24.267\;T }{RT}} \right) $$
(19)

where R is the gas constant (R = 8.314 J mol−1 K−1) and T temperature in K.

The \( \frac{{P_{\text{CO}} }}{{P_{{{\text{CO}}_{2} }} }} \) thus obtained was used to determine the equilibrium carbon activity at the interface assuming \( P_{\text{CO}} \) + \( P_{{{\text{CO}}_{2} }} \) = 1 atm from the following reaction:

$$ \left[ {\text{C}} \right] + {\text{CO}}_{2} \left( g \right) = 2{\text{CO}}\left( g \right) $$
(20)

The standard Gibbs free energy of formation of Reaction (20) was given by [37, 43],

$$ \Delta G_{20}^{o} = - RT\ln \left[ {\frac{{P_{\text{CO}}^{2} }}{{a_{\text{c}} P_{{{\text{CO}}_{2} }} }}} \right] = 170700 - 174.5\;T\;\left( {{\text{J/mole}}\;{\text{of}}\;C} \right) $$
(21)

where \( a_{c} \) was the equilibrium activity of carbon at the scale–steel interface with graphite being the standard state. From Eq. (21), we obtained,

$$ a_{\text{c}} = \frac{{P_{\text{CO}}^{2} }}{{P_{{{\text{CO}}_{2} }} }}\exp \left[ {\frac{170700 - 174.5\;T}{RT}} \right] $$
(22)

The calculated \( a_{\text{c}} \) as a function of temperature is plotted in Fig. 14.

Fig. 14
figure 14

Equilibrium carbon activity at FeO–steel interface as a function of temperature

After the equilibrium carbon activity at the interface was determined, the corresponding carbon concentration in the steel at the FeO–steel interface could be calculated using the known relationships between carbon activity and carbon composition. For dissolved carbon in α-Fe, the relationship given by Lobo and Gaiger [44] to express the activity coefficient of carbon in ferrite for carbon steel, \( \varUpsilon_{\text{C}} \left( {\text{ferrite}} \right) \), was used,

$$ \log \varUpsilon_{C} = { \log }\left( {\frac{{a_{\text{C}} }}{{X_{\text{C}} }}} \right) = \frac{5846}{T\left( K \right)} - 2.687 $$
(23)

where \( X_{\text{C}} \) was the equilibrium mole fraction of carbon in ferrite.

If the steel phase in equilibrium with the scale was γ-Fe, there were several equations available in the literature [45, 51,52,53] to relate the carbon activity to steel carbon composition. In this study, the equation given by Ellis et al. [45] was used:

$$ \log a_{\text{c}} = \log \left[ {\frac{{X_{\text{c}} }}{{1 - 5X_{\text{c}} }}} \right] + \frac{2080}{T} - 0.639 $$
(24)

Using Eqs. (22) to (24), the equilibrium carbon concentrations at the FeO–steel interface, depending on which steel phase was stable, was calculated.

When a ferrite layer formed on the steel surface, the difference in the carbon concentration between two interfaces of the ferrite layer, \( \Delta C_{{C\;{\text{in}}\;\alpha }} \), provided a driving force for carbon diffusion through the ferrite layer. When the ferrite layer was thin, the carbon distribution in it could be approximated as having a linear composition gradient and the carbon diffusion flux through this layer could be described using the simplified Fick’s first law:

$$ J_{\text{C}}^{{\alpha - {\text{Fe}}}} = D_{\text{C}}^{{\alpha - {\text{Fe}}}} \cdot \frac{{C_{{C\;{\text{in}}\;\alpha }}^{\alpha /\gamma } - C_{{C\;{\text{in}}\;\alpha }}^{{\alpha /{\text{FeO}}}} }}{X} $$
(25)

where \( J_{\text{C}}^{{\alpha - {\text{Fe}}}} \) = diffusion flux of carbon through the ferrite layer in mol cm−2 s−1 (moles per square centimetre per second); \( D_{\text{C}}^{{\alpha - {\text{Fe}}}} \) = diffusion coefficient of carbon in ferrite, in cm2 s−1; \( C_{{C\;{\text{in}}\;\alpha }}^{\alpha /\gamma } \) = carbon composition on the ferrite side at the BCC–FCC interface in mol cm−3; \( C_{{C\;{\text{in}}\;\alpha }}^{{\alpha /{\text{FeO}}}} \) = carbon composition in ferrite at the BCC–FeO interface in mol cm−3; \( X \) = thickness of the ferrite layer, in cm.

From Eq. (25), it was seen that for a certain thickness of the decarburization layer, \( X \), the rate of carbon diffusion was determined by the product of carbon diffusivity \( D_{\text{C}}^{{\alpha - {\text{Fe}}}} \) and the carbon composition difference between the two interfaces of the ferrite layer, \( \Delta C_{{C\;{\text{in}}\;\alpha }} = C_{{C\;{\text{in}}\;\alpha }}^{\alpha /\gamma } - C_{{C\;{\text{in}}\;\alpha }}^{{\alpha /{\text{FeO}}}} \). Following the approach used by Smith [54], the following product was defined as the relative permeability (\( P_{\text{C}}^{{\alpha - {\text{Fe}}}} \) in mol cm−1 s−1) of carbon through the ferrite layer,

$$ P_{\text{C}}^{{\alpha - {\text{Fe}}}} = D_{\text{C}}^{{\alpha - {\text{Fe}}}} \cdot (C_{{C\;{\text{in}}\;\alpha }}^{\alpha /\gamma } - C_{{C\;{\text{in}}\;\alpha }}^{\alpha /FeO} ) = D_{\text{C}}^{{\alpha - {\text{Fe}}}} \cdot \Delta C_{{C\;{\text{in}}\;\alpha }} $$
(26)

Substitution of Eq. (26) in Eq. (25) yielded

$$ J_{\text{C}}^{{\alpha - {\text{Fe}}}} = \frac{{P_{C}^{{\alpha - {\text{Fe}}}} }}{X} $$
(27)

From Eq. (27), it was seen that a greater relative permeability immediately led to a greater carbon flux for a given ferrite layer thickness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.R., Xu, X. & Liu, Y. Decarburization of 60Si2MnA in Atmospheres Containing Different Levels of Oxygen, Water Vapour and Carbon Dioxide at 700–1000 °C. Oxid Met 93, 105–129 (2020). https://doi.org/10.1007/s11085-019-09949-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09949-3

Keywords

Navigation