Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T17:57:02.653Z Has data issue: false hasContentIssue false

Geology, Mineralogy, Geochemistry, and Genesis of Bentonite Deposits in Miocene Volcano–Sedimentary Units of the Balikesir Region, Western Anatolia, Turkey

Published online by Cambridge University Press:  01 January 2024

Selahattİn Kadİr*
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR–26480, Eskişehir, Turkey
Tacİt Külah
Affiliation:
Department of Geological Engineering, Kütahya Dumlupınar University, TR–43100, Kütahya, Turkey
Hülya Erkoyun
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR–26480, Eskişehir, Turkey
George E. Christidis
Affiliation:
Department of Mineral Resources Engineering, Technical University of Crete, GR–73100, Chaniá, Greece
Raffİ Arslanyan
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR–26480, Eskişehir, Turkey
*
*E-mail address of corresponding author: skadir_esogu@yahoo.com

Abstract

The widespread Balıkesir bentonite deposits within the Miocene volcano-sedimentary units in western Anatolia have economic potential; they are important raw materials for the paper and bleaching industries in Turkey. No detailed geological, mineralogical, geochemical, or genesis characterizations of these bentonite deposits have been carried out to date. The present study was undertaken to close this gap. The mineralogical characteristics of the bentonites and their parent rocks were examined using polarized-light microscopy, X-ray powder diffractometry (XRD), scanning- and transmission-electron microscopies (SEM–EDX and TEM), and chemical (ICP–AES and –MS) methods. In the bentonite deposits, smectite is associated with smaller amounts of illite, chlorite, quartz, feldspar, dolomite, calcite, opal-CT, and amphibole. The smectite was identified by sharp basal reflections at 14.42–14.93 Å. Plagioclase and sanidine crystals in volcanic units are altered and sericitized. Biotite and hornblende are partly to completely Fe-(oxyhydr)oxidized and chloritized. Smectite flakes occur on altered feldspar and mica grains and devitrified volcanic glass fragments in association with or without calcite ± dolomite crystals. Increasing Al+Fe+Mg/Si ratios with increasing degree of alteration reveal that hydration of volcanogenic grains (feldspar, mica, hornblende, glass shard) favored precipitation of smectite with montmorillonite composition, with an average structural formula: (Ca0.31Na0.05K0.08)(Al2.72Fe0.17Mg1.27Ti0.011Mn0.01)(Si7.94Al0.06)O20(OH)4. The concentration of Al2O3 and MgO and increase of LREE/HREE ratio, and a distinct, negative Eu anomaly show that smectite was probably formed as a result of the decomposition of volcanic feldspar, mica, amphibole, and volcanic glass. Association of carbonate rocks within the smectite-rich material and the absence of chlorite and detrital materials such as rock fragments in the bentonites suggest that the bentonite deposits formed authigenetically as ‘primary bentonites’ from volcanoclastic materials deposited in a calm lacustrine–palustrine environment during an early diagenetic process.

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akdeniz, N. (1980). Başlamis formasyonu [Başlamis formation]. Jeoloji Mühendisliği Dergisi, 10, 3948 [in Turkish with English abstract].Google Scholar
Akyürek, B. & Akdeniz, N. (1989). Geological Map of Balιkesir G 5 Quadrangle, Scale 1: 100.000, General Directorate of Mineral Research and Exploration (MTA) Publications, Ankara, Turkey.Google Scholar
Aleksiev, B. & Djourova, E. G. (1975). On the origin of zeolite rocks. Comptes Rendus de VAcadémie Bulgare de Sciences, 28, 517520.Google Scholar
Bakιr, S., Akbulut, A., Kapkaç, F., Karahan, D.S., & Çetin, C. (2012). Türkiye Bentonit Envanteri (Envanter Serisi 204), Maden Tetkik ve Arama Genel Müdürlüğü, Ankara [Turkey Bentonite Inventory (Inventory Series 204), Ankara, Turkey, General Directorate of Mineral Research and Exploration].Google Scholar
Christidis, G. & Dunham, A. C. (1997). Compositional variations in smectites. Part II: Alteration of acidic precursors. A case study from Milos Island, Greece. Clay Minerals, 32, 253270.CrossRefGoogle Scholar
Christidis, G. & Scott, P. W. (1997). The origin and control of colour of white bentonites from the Aegean islands of Milos and Kimolos, Greece. Mineralium Deposita, 32, 271279.CrossRefGoogle Scholar
Christidis, G., Scott, P. W., & Marcopoulos, T. (1995). Origin of the bentonite deposits of Eastern Milos and Kimolos, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43, 6377.CrossRefGoogle Scholar
Christidis, G. E. (1998). Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379399.CrossRefGoogle Scholar
Christidis, G. E. (2001). Formation and growth of smectites in bentonites: A case study from Kimolos Island, Aegean, Greece. Clays and Clay Minerals, 49, 204215.CrossRefGoogle Scholar
Christidis, G. E. (2008). Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43, 515529.CrossRefGoogle Scholar
Çiflikli, M., Çiftçi, E., & Bayhan, H. (2013). Alteration of glassy volcanic rocks to Naand Ca-smectites in the Neogene basin of Manisa, western Anatolia, Turkey. Clay Minerals, 48, 513527.CrossRefGoogle Scholar
Çoban, F. (2014). Bigadiç (Balιkesir) Bentonit Yataklarιnn Mineralojisive Jeokimyasι ve bentonitleşme sιrasιndaki ana, eser ve nadir toprak elementlerinin mobilizasyonu. Çukurova University Journal of the Faculty of Engineering and Architecture, 29, 5568 [in Turkish with English abstract].Google Scholar
de'Genarro, M., Cappelletti, P., Langella, A., Perrotta, A., & Scarpati, C. (2000). Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contributions to Mineralogy and Petrology, 139, 1735.CrossRefGoogle Scholar
Dible, W. E. Jr., & Tiller, W. A. (1981). Kinetic model of zeolite paragenesis in tuffaceous sediments. Clays and Clay Minerals, 29, 323330.CrossRefGoogle Scholar
Ece, O. I., & Schroeder, P. A. (2007). Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 1835.CrossRefGoogle Scholar
Ece, Ö.I., Schroeder, P. A., Smilley, M. J., & Wampler, J. M. (2008). Acid-sulfate alteration volcanic rocks and genesis of halloysite and alunite deposits in the Biga Peninsula, NW Turkey. Clay Minerals, 43, 281315.CrossRefGoogle Scholar
Ece, Ö., Ekinci, B., Schroeder, P. A., Crowe, D., & Esenli, F. (2013). Origin of the Düvertepe kaolin-alunite deposits in Simav Graben, Turkey: Timing and Styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Research, 255, 57–18.CrossRefGoogle Scholar
Ekinci Şans, B., Esenli, F., Kadir, S., & Elliott, W. C. (2015). Genesis of smectite in siliciclastics and pyroclastics of the Eocene $IDslambeyli Formation in the Lalapaşa region, NW Thrace, Turkey. Clay Minerals, 50, 459483.CrossRefGoogle Scholar
Elliott, W. C. (1993). Origin of the Mg smectite at the Cretaceous/ Tertiary (K/T) boundary at Stevns Klint, Denmark. Clays and Clay Minerals, 41, 442452.CrossRefGoogle Scholar
Erdoğan, B., Altner, D., Güngör, T., & Özer, S. (1990). Stratigraphy of Karaburun peninsula. Maden Tetkik ve Arama Dergisi, 111, 123.Google Scholar
Eren, M., Yeşilot Kaplan, M., Kadir, S., & Kapur, S. (2018). Biogenic (β-fabric) features in the hard laminated crusts of the Mersin and Adana regions, southern Turkey and their role in calcrete development. Catena, 168, 3446.CrossRefGoogle Scholar
Erkül, F., Helvacι, C., & Sözbilir, H. (2005a). Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geological Journal, 40, 545570.CrossRefGoogle Scholar
Erkül, F., Helvacι, C., & Sözbilir, H. (2005b). Stratigraphy and Geochronology of the Early Miocene Volcanic Units in the Bigadiç Borate Basin, Western Turkey. Turkish Journal of Earth Sciences, 14, 227253.Google Scholar
Esenli, F. (1993). The chemical changes during zeolitization (heulandite-clinoptilolite type) of the acidic tuffs in the Gördes Neogene basin. Geological Bulletin of Turkey, 36, 3744 [in Turkish with English abstract].Google Scholar
Ghanem, H., & Jarrar, G. H. (2013). Geochemistry and petrogenesis of the 595 Ma shoshonitic Qunai monzogabbro, Jordan. Journal of African Earth Sciences, 88, 114.CrossRefGoogle Scholar
Grant, J. A. (1986). The isocon diagram – a simple solution to Gresens' equation for metasomatic alteration. Economic Geology, 81, 19761982.CrossRefGoogle Scholar
Grant, J. A. (2005). Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, 30, 9971004.CrossRefGoogle Scholar
Grim, R. E., & Güven, N. (1978). Bentonites, Geology, Mineralogy, Properties and Uses (pp. 13137). Amsterdam: Elsevier.Google Scholar
Harnois, L. (1988). The CIW index: a new Chemical Index of Weathering. Sedimentary Geology, 55, 319322.CrossRefGoogle Scholar
Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered Volcanic Island Arc Rocks using immobile trace elements: development of the Th-Co discrimination diagram Journal of Petrology, 48, 23412357.CrossRefGoogle Scholar
Huff, W. D. (2016). K-bentonites: A review. American Mineralogist, 101, 4370.CrossRefGoogle Scholar
Huff, W. D., Anderson, T. B., Rundle, C. C., & Odin, G. S. (1991). Chemostratigraphy, K-Ar ages and illitization of Silurian K-bentonites from the Central Belt of the Southern Uplands-Down-Longford terrane, British Isles. Journal of the Geological Society, 148, 861868.CrossRefGoogle Scholar
Inoue, A. (1995). Formation of Clay Minerals in Hydrothermal Environments. In Velde, B. (Ed.), Origin and Mineralogy of Clays, Clays and the Environment (pp. 268329). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Jeans, C. V., Merriman, R. J., Mitchell, J. G., & Bland, D. J. (1982). Volcanic clays in the Cretaceous of southern England and northern Ireland. Clay Minerals, 17, 105156.CrossRefGoogle Scholar
Kadir, S. & Akbulut, A. (2009). Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Minerals, 44, 89112.CrossRefGoogle Scholar
Kadir, S., Erman, H., & Erkoyun, H. (2011). Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene volcanites, Kütahya (western Anatolia), Turkey. Clays and Clay Minerals, 59, 250276.CrossRefGoogle Scholar
Kadir, S. & Kart, F. (2009). Occurrence and origin of the Sögüt kaolinite deposits in the Paleozoic Saricakaya granite–granodiorite complexes and overlying Neogene sediments (Bilecik, northwestern Turkey). Clays and Clay Minerals, 57, 311329.CrossRefGoogle Scholar
Kadir, S., Külah, T., Önalgil, N., Erkoyun, H., & Elliott, W. C. (2017). Mineralogy, geochemistry, and genesis of bentonites in Miocene volcanic-sedimentary units of the Ankara-Çankιrι Basin, central Anatolia, Turkey. Clays and Clay Minerals, 65, 6492.CrossRefGoogle Scholar
Kirov, G., Šamajova, E., Nedialkov, R., & Stanimirova, T. S. (2011). Alteration processes and products of acid pyroclastic rocks in Bulgaria and Slovakia. Clay Minerals, 46, 279294.CrossRefGoogle Scholar
Kocabaş, C. (2006). Yeniköy (Bigadiç) Doğusundaki Bentonit Oluşumlarįnn Mineralojik-Jeokimyasal $IDncelemesi. M.Sc. Thesis, Balιkesir University, Turkey, pp. 92 [in Turkish with English abstract].Google Scholar
Konuk, T. (1977). Bornova filişinin yasį hakkιnda [On the age of Bornova flysch]. Ege Üniversitesi Fen Fakültesi Dergisi, B1, 65–74 [in Turkish with English abstract].Google Scholar
Koutsopoulou, E., Christidis, G. E., & Marantos, I. (2016). Mineralogy, geochemistry and physical properties of bentonites from the western Thrace Region and the islands of Samos and Chios, east Aegean, Greece. Clay Minerals, 51, 563588.CrossRefGoogle Scholar
Kunze, G.W., & Dixon, J.B. (1986). Pretreatment for mineralogical analysis. In Klute, A. (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd edition) (pp. 91100). American Society of Agronomy, Inc. and The Soil Science Society of America, Inc., Madison, Wisconsin, USA.Google Scholar
Lavery, N. G. (1985). Quantifying chemical changes in hydrothermally altered volcanic sequences – silica enrichment as a guide to the Crandon massive sulfide deposit, Wisconsin, U.S.A. Journal of Geochemical Exploration, 24, 127.CrossRefGoogle Scholar
López-Moro, F. J. (2012). EASYGRESGRANT – A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Computers and Geosciences, 39, 191196.CrossRefGoogle Scholar
Machiels, L., Garcés, D., Snellings, R., Vilema, W., Morante, F., Paredes, C., & Elsen, J. (2014). Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: Evidence for zeolite formation in cooling marine pyroclastic flow deposits. Applied Clay Science, 87, 108119.CrossRefGoogle Scholar
Malek-Mahmoodi, F., Khalili, M., & Mirlohi, A. (2013). The origin of the bentonite deposits of Tashtab Mountains (Central Iran): Geological, Geochemical, and Stable Isotope evidences. Geopersia, 3, 7386.Google Scholar
Mongelli, G. (1997). Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140, 6979.CrossRefGoogle Scholar
Motoki, A., Sichel, S. E., Vargas, T., Melo, D. P., & Motoki, K. F. (2015). Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences), 87, 19591979.CrossRefGoogle ScholarPubMed
MTA (2002). 1/500,000 scale geological map of Turkey – $IDzmir, General Directorate of Mineral Research and Exploration of Turkey.Google Scholar
Mutlu, H., Sariz, K., & Kadir, S. (2005). Geochemistry and origin of the Şaphane alunite deposit, Western Anatolia, Turkey. Ore Geology Reviews, 26, 3950.CrossRefGoogle Scholar
Okay, A.$ID., Satr, M., Siyako, M., Monie, P., Metzger, R., & Akyüz, S. (1996). Paleo- and Neo-Tethyan events in northwestern Turkey: geologic and geochronological constrains. In Yin, A. & Harrison, T.M. (Eds.), The Tectonic Evolution of Asia (pp. 420441). Cambridge University Press, Cambridge, UK.Google Scholar
Okay, A. L., & Siyako, M. (1993). The revised location of the $IDzmir-Ankara Suture in the region between Balιkesir and $IDzmir. In Turgut, S. (Ed.), Tectonics and Hydrocarbon Potential of Anatolia and Surrounding Regions (pp. 333355). Ankara: Ozan Sungurlu Symposium Proceedings.Google Scholar
Okay, A. L., Tansel, L., & Tüysüz, O. (2001). Obduction, subduction and collision as reflected in the Upper Cretaceous-Lower Eocene sedimentary record of western Turkey. Geological Magazine, 138, 117142.CrossRefGoogle Scholar
Osborn, S. G., Duffield, L. T., Elliott, W. C., Wampler, J. M., Elmore, R. D., & Engel, M. H. (2014). The timing of diagenesis and thermal maturation of the Cretaceous Marias River Shale, Disturbed Belt, Montana. Clays and Clay Minerals, 62, 112125.CrossRefGoogle Scholar
Paz, S. P. A., Angélica, R. S., & Neves, R. F. (2012). Mg-bentonite in the Parnaíba Paleozoic Basin, Northern Brazil. Clays and Clay Minerals, 60, 265277.CrossRefGoogle Scholar
Pehlivan, Ş., Duru, M., Dönmez, M., Ilgar, A., Akçay, E., Erdoğan, K., & Özer, D. (2007). Geological Map of Bandιrma H 19 Quadrangle, Scale 1: 100.000, General Directorate of Mineral Research and Exploration (MTA) Publications, Ankara, Turkey.Google Scholar
Pe-Piper, G., & Piper, D. J. W. (2006). Unique features of the Cenozoic igneous rocks of Greece. In Dilek, Y. & Pavlides, S. (Eds.), Postcollisional tectonics and magmatism in the Mediterranean Region and Asia (pp. 259282). Geological Society of America Special Paper 409.Google Scholar
Pe-Piper, G. & Piper, DJ.W. (2007). New insights into the relationship between magmatism and tectonics. In Beccaluva, L., Bianchini, G. & Wilson, M. (Eds.), Cenozoic Volcanism in the Mediterranean Area (pp. 1731). Geological Society of America Special Paper 417.Google Scholar
Ray, D. C., Collings, A. J. V., Worton, G. J., & Jones, G. (2011). Upper Wenlock bentonites from Wren's Nest Hill, Dudley: comparisons with prominent bentonites along Wenlock Edge, Shropshire, England. Geological Magazine, Cambridge University Press, 148, 670681.CrossRefGoogle Scholar
Środoń, J., Clauer, N., Banas, M., & Wójtowicz, A. (2006). K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41, 669690.CrossRefGoogle Scholar
Sun, S.-s., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. London, UK: Geological Society.Google Scholar
Takagi, T., Koh, S. M., Song, M. S., Itoh, M., & Mogi, K. (2005). Geology and properties of the Kawasaki and Dobuyama bentonite deposits of Zao region in northeastern Japan. Clay Minerals, 40, 333350.CrossRefGoogle Scholar
Ver Straeten, C. A. (2004). K-bentonites, volcanic ash preservation, and implications for Early to Middle Devonian volcanism in the Acadian orogen, eastern North America. Geological Society of America, 116, 474489.CrossRefGoogle Scholar
Weaver, C. E. & Beck, K. (1977). Miocene of the S.E. United States: A Model for chemical sedimentation in a peri-marine environment. Special Issue. Sedimentary Geology, 17, 1234.CrossRefGoogle Scholar
Whitney, D. L. & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 245252.CrossRefGoogle Scholar
Wright, V. P. (1986). The role of fungal biomineralization in the formation of early Carboniferous soil fabrics. Sedimentology, 33, 831838.CrossRefGoogle Scholar
Wright, V. P., & Tucker, M. E. (1991). Calcretes. Oxford: Blackwell Scientific Publications 351 pp.CrossRefGoogle Scholar
Wulaningsih, T., Humaida, H., Harijoko, A., & Watanabe, K. (2013). Major element and rare earth elements investigation of Merapi volcano, central Java, Indonesia. Procedia Earth and Planetary Science, 6, 202211.CrossRefGoogle Scholar
Zielinski, R. A. (1982). The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the troublesome formation, Colorado, USA. Chemical Geology, 35, 185204.CrossRefGoogle Scholar