Skip to main content
Log in

Electrophoretic mobility of a cylindrical colloidal particle with a slip surface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

General expressions of the electrophoretic mobility-zeta potential relationship for a cylindrical colloidal particle with a hydrodynamically slipping surface in an aqueous electrolyte solution under a transverse or tangential electric field are obtained on the basis of the Navier boundary condition. Approximate expressions for the electrophoretic mobility of cylindrical particles carrying a low zeta potential are derived. As in the case of a sphere, the electrophoretic mobility of a cylinder increases with increasing slip length, which characterizes the hydrophobicity of the particle surface.

Electrophoretic mobility of a cylinder with a slip surface in a transverse electric filed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Derjaguin BV, Landau DL (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14:633–662

    Google Scholar 

  2. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  3. von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Barth, Leipzig, pp 366–428

    Google Scholar 

  4. Hückel E (1924) Die Kataphorese der Kugel. Phys Z 25:204–210

    Google Scholar 

  5. Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc Roy Soc London Ser A 133:106–129

    Article  CAS  Google Scholar 

  6. Abramson HA, Gorin MH, Moyer LS (1939) The polar groups of protein and amino acid surfaces in liquids. Chem Rev 24:345–366

    Article  CAS  Google Scholar 

  7. Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364

    CAS  Google Scholar 

  8. Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc Roy Soc London Ser A 203:514–533

    Article  CAS  Google Scholar 

  9. Wiersema PH, Loeb AL, Overbeek JTG (1966) Calculation of the electrtophoretic mobility of a spherical colloid particle. J Colloid Interface Sci 22:78–99

    Article  CAS  Google Scholar 

  10. Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloid Zh 32:360–368

    CAS  Google Scholar 

  11. Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and colloid science, vol 2. John Wiley & Sons, Hoboken, pp 273–336

    Google Scholar 

  12. de Keizer A, van der Drift WPJT, Overbeek JTG (1975) Electrophoresis of randomly oriented cylindrical particles. Biophys Chem 3:107–108

    Article  CAS  Google Scholar 

  13. O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626

    Article  Google Scholar 

  14. Stigter D (1978) Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 1. Mobility in transverse field. J Phys Chem 82:1417–1423

    Article  CAS  Google Scholar 

  15. Stigter D (1978) Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 2. Random orientation in external field and application to polyelectrolytes. J Phys Chem 82:1424–1429

    Article  CAS  Google Scholar 

  16. van der Drift WPJT, de Keizer A, Overbeek JTG (1979) Electrophoretic mobility of a cylinder with high surface charge density. J Colloid Interface Sci 71:67–78

    Article  Google Scholar 

  17. Hunter RJ (1981) Zeta Potential in Colloid Science. Academic Press, New York

    Google Scholar 

  18. Sherwood JD (1982) Electrophoresis of rods. J Chem Soc Faraday Trans II 78:1091–1100

    Article  CAS  Google Scholar 

  19. Van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  20. Hunter RJ (1989) Foundations of colloid science, vol 2. Oxford University Press, London/New York

    Google Scholar 

  21. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    Article  CAS  Google Scholar 

  22. Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

    Article  CAS  Google Scholar 

  23. Lyklema J (1995) Fundamentals of interface and colloid science, solid-liquid interfaces, vol 2. Academic Press, New York

    Google Scholar 

  24. Ohshima H (1996) Henry’s function for electrophoresis of a cylindrical colloidal particle. J Colloid Interface Sci 180:299–301

    Article  CAS  Google Scholar 

  25. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  26. Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam

    Google Scholar 

  27. Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-. Nano-, Atto-Engineering, CRC Press, Boca Raton

    Google Scholar 

  28. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  29. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  30. Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  31. Ohshima H (2014) Approximate analytic expression for the electrophoretic mobility of a cylindrical colloidal particle. Relaxation effect. Colloid Polym Sci 292:1227–1233

    Article  CAS  Google Scholar 

  32. Ohshima H (2015) Approximate analytic expression for the electrophoretic mobility of moderately charged cylindrical colloidal particles. Langmuir 31:13633–13638

    Article  CAS  Google Scholar 

  33. Lamb H. Hydrodynamics, Cambridge University Press; 1975

  34. Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001

    Article  Google Scholar 

  35. Park HM (2013) Electrophoresis of particles with Navier velocity slip. Electrophoresis 34:651–661

    Article  CAS  Google Scholar 

  36. Bhattacharyya S, Majee PS (2017) Electrophoresis of a polarizable charged colloid with hydrophobic surface: a numerical study. Phys Rev E 95:042605

    Article  Google Scholar 

  37. Gopmandal PP, Bhattacharyya S, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295:2077–2082

    Article  CAS  Google Scholar 

  38. Kumar B, Gopmandal PP, Sinha RK, Ohshima H (2019) Electrophoresis of hydrophilic/hydrophobic rigid colloid with effects of relaxation and ion size. Electrophoresis 40:1282–1292

    Article  CAS  Google Scholar 

  39. Ohshima H (2019) Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Adv Colloid Interf Sci 272:101996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Partha P. Gopmandal of National Institute of Technology Durgapru and Prof. Somnath Bhattacharyya of Indian Institute of Technology Kharagpur for introducing me in the field of electrokinetics of a colloidal particle with a slip surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Electrophoretic mobility of a cylindrical colloidal particle with a slip surface. Colloid Polym Sci 298, 151–156 (2020). https://doi.org/10.1007/s00396-019-04586-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04586-3

Keywords

Navigation