Skip to main content
Log in

High Temperature Oxidation of Slurry Aluminized Deformable Austempered Ductile Iron (DADI)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work reports on the aluminization and oxidation behaviour of a new class of cast iron (deformable austempered ductile iron, DADI). The slurry aluminization resulted in uneven coatings due to the lack of wettability of molten aluminium to the graphite inclusions of the substrate. In spite of this, the isothermal tests at 650 °C for 100 hour in air revealed a drastic reduction of oxygen uptake related to the formation of mixed Al-containing spinels compared to the very unprotective iron oxides formed in the absence of coating. It derives that deposition of thicker aluminide layers by precoating with, e.g. nickel would be a promising way to protect further DADI cast iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.Elliott: Cast Iron Technology, Butterworths, London, 1988, pp.672.

    Google Scholar 

  2. M. Bauccio: ASM Materials reference book, 3rd ed., ASM International, USA, 1993, pp.620.

    Google Scholar 

  3. Davis JR (1996) ASM Specialty Hand Books, Cast Irons, USA. Springer, New York, pp 494.

    Google Scholar 

  4. E.Kutelia, N.Khidasheli, O.Tsurtsumia, G.Beradze: Procedia Eng., 2010, vol. 2, pp.1219-1224.

    Article  Google Scholar 

  5. E. Kutelia, N. Khidasheli, G. Beradze, T. Dzigrashvili, D. Butskrikidze: NACE-Corrosion 2008, Paper #08113. New Orleans, USA, 2018.

  6. X. Wang, Y. Fan, X. Zhao, A. Du, R. Ma, X. Cao: Metals 2019 vol. 9, pp. 648.

    Article  CAS  Google Scholar 

  7. KianiRashid AR, Edmonds DV (2004) Surf. Interface Anal. 36:1011–1013.

    Article  Google Scholar 

  8. F. Pedraza, M. Mollard, B. Rannou, J. Balmain, B. Bouchaud, G. Bonnet: Mater. Chem. Phys., 2012, vol. 134, pp. 700-705.

    Article  CAS  Google Scholar 

  9. M.C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza, M. Schütze: Intermetallics, 2014, vol. 44, pp. 8-17.

    Article  CAS  Google Scholar 

  10. F. Pedraza, M. Proy, C. Boulesteix, P. Krukovskyi, M. Metel: Mater. Corros., 2016, vol. 67, pp.1059-1067.

    Article  CAS  Google Scholar 

  11. B. Bouchaud, B. Rannou, F. Pedraza: Mater. Chem. Phys., 2013, vol. 143, pp. 416-424.

    Article  CAS  Google Scholar 

  12. C. Boulesteix, F. Pedraza: Surf. Coating Technol., 2018, vol. 339, pp. 27–36.

    Article  CAS  Google Scholar 

  13. M. Zamanzade, A. Barnoush, C. Motz: Crystals, 2016, vol. 6, pp. 1-29.

    Article  CAS  Google Scholar 

  14. B.Rannou, F.Velasco, S. Guzman, V. Kolarik, F. Pedraza: Mater. Chem. Phys., 2012, vol. 134, 1, pp. 360-365.

    Article  CAS  Google Scholar 

  15. H. Okamoto (1992) ASM Handbook: Alloy Phase Diagrams. ASM Internationals, Boston, pp. 800.

    Google Scholar 

  16. X. Li, A. Scherf, M. Heilmaier, and F. Stein: J. Phase Equilib. Diffus., 2016, vol. 37, pp. 162–173.

    Article  CAS  Google Scholar 

  17. V. B. Trindade, R. Borin, B.Z. Hanjari, S. Yang, U. Krupp, H-J. Christ: Mater. Res., 2005, vol. 8, pp. 365-369.

    Article  CAS  Google Scholar 

  18. Ravi VA, Nguyen TK, Nava JC (2015) Aluminizing of steel to improve high temperature corrosion resistance. In: Mittemeijer EJ, Somers MA (eds) Thermochemical surface engineering of steels. Woodhead Publishing, Sawston, pp 751–767.

    Chapter  Google Scholar 

  19. R.W. Richards, R.D. Jones, P. D. Clements, H. Clarke: Intnal. Mater. Rev., 1994, vol. 39, pp. 191-212.

    Article  CAS  Google Scholar 

  20. F. Pedraza, R. Podor: Mater. Charact., 2016, vol. 113, pp. 198-206.

    Article  CAS  Google Scholar 

  21. L.Levin, A. Ginzburg, L. Klinger, T. Werber, A. Katsman, P. Schaaf: Surf. Coating. Technol., 1998, vol. 106, pp. 209–213.

    Article  CAS  Google Scholar 

  22. Kostov A, Friedrich B, Živković D (2008) J Min Metall Sect B 44:49–61.

    Article  CAS  Google Scholar 

  23. M-B. Lin, C-J. Wang: Surf. Coating Technol., 2010, vol. 205, pp. 1220-1224.

    Article  CAS  Google Scholar 

  24. M-B. Lin, C-J. Wang, A.A. Volinsky: Surf. Coating Technol., 2011, vol. 206, pp. 1595–1599.

    Article  CAS  Google Scholar 

  25. S. Kang, K. Han, K. Kim, Y. Kang, K.Son, D. Kim: ISIJ Int., 2012, vol. 52, pp. 1342–1347.

    Article  CAS  Google Scholar 

  26. R. Mola, W. Depczyński: Arch. Foundry Eng., 2014, vol. 68, pp. 20-23.

    Google Scholar 

  27. R. Mola, T. Bucki, K. Wcisło: Arch. Foundry Eng., 2014, vol. 14, pp. 85-90.

    Article  Google Scholar 

  28. K. Landry, S. Kalogeropoulou, N. Eustathopoulos: J. Mater. Sci. Eng. A, 1998, vol. 254, pp. 99–111.

    Article  Google Scholar 

  29. D. Zhang, D-Y. Zhu, T. Zhang, Q-F. Wang: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 2473-2480.

    Article  CAS  Google Scholar 

  30. C. Boulesteix, F. Pedraza: Surf. Coat. Technol., 2018, vol. 339, pp. 27-36.

    Article  CAS  Google Scholar 

  31. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, T.Y. Lee, Thermophysical properties of matter, Thermal Expansion Nonmetallic Solids, 13, Plenum Press, New York, 1977, p. 176.

    Google Scholar 

  32. M-B. Lin, C-J. Wang, A.A. Volinsky: Oxid. Met., 2011, vol. 76, pp. 161–168.

    Article  CAS  Google Scholar 

  33. E. A. Gulbransen, K. F. Andrew, F. A. Brassart: J. Electrochem. Soc., 1963, vol. 110, pp. 476-483.

    Article  CAS  Google Scholar 

  34. Pöter B, Stein F, Wirth R, Spiegel M (2005) Z. Phys. Chem 219:1489–1503.

    Article  Google Scholar 

  35. F. Pedraza, J.L. Grosseau-Poussard, J-F. Dinhut: Intermetallics, 2005, vol. 13, pp. 27–33.

    Article  CAS  Google Scholar 

  36. B. A. Pint, Y. Zhang: Mater. Corros., 2011, vol. 62, pp. 549-560.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the European Commission in the project “Production of Coatings for New Efficient Clean Coal Power Plant Materials”, POEMA, Grant agreement 31043 (FP7-NMP) and the intellectual support of all partners. Also, many thanks to the University of La Rochelle (France) for providing of co-founding and financing Olga Tsurtsumia’s secondment to the Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pedraza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on 17 June 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurtsumia, O., Pedraza, F., Gregoire, B. et al. High Temperature Oxidation of Slurry Aluminized Deformable Austempered Ductile Iron (DADI). Metall Mater Trans A 51, 920–926 (2020). https://doi.org/10.1007/s11661-019-05576-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05576-4

Navigation