Skip to main content
Log in

Migration Pinning and Roughening Transition of a Ni Grain Boundary

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To date, much research has been conducted into the effect of migration pinning on the grain size in polycrystalline materials. However, effects of migration pinning on the grain-boundary structure and its transition have not been illuminated. Here, using transmission electron microscopy (TEM) we have explored the pinning effects for the grain boundary in a Ni bicrystal. During TEM specimen preparation, a hole was intentionally drilled in the middle of the grain boundary as a pinning point against grain-boundary migration. The specimen was heated to 600 °C. The grain boundary is driven to migrate by both the surface energy anisotropy and the total strain energy reduction. Grain-boundary facets with a plane orientation of {0 3 2}//{1 1 1} appear near the hole. The facets undergo a structural transition from atomically flat to rough with increasing distance from the hole. A pinning force exerted by the hole suppresses the migration of the grain boundary near the hole, indicating that the grain-boundary region away from the hole is subjected to a higher driving force. It certainly appears that the phenomenon originates from a change in driving force with the distance from the hole, being a signature of kinetic roughening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. 1.C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15–51.

    Google Scholar 

  2. 2.F. Hässner: Recrystallization of Metallic Materials. Dr. Riederer-Verlag, Stuttgart, 1978.

    Google Scholar 

  3. G. Gottstein: in Physical Foundations of Materials Science, Chap. 7. Springer, Berlin, 2004.

  4. 4.F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena Second edition. Elsevier, Amsterdam, 2004.

    Google Scholar 

  5. 5.J. Zhou, S. Zhang, X. Wang, B. Zhao, X. Dong, and L. Zhang: Scripta Mater., 2016, vol. 116, pp. 100–103.

    Article  CAS  Google Scholar 

  6. 6.K. Huang, K. Zhang, K. Marthinsen, and R.E. Logé: Acta Mater., 2017, vol. 141, pp. 360–373.

    Article  CAS  Google Scholar 

  7. 7.R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–274.

    Article  Google Scholar 

  8. 8.P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–924.

    Article  CAS  Google Scholar 

  9. 9.G. Couturier, C. Maurice, and R. Fortunier: Philos. Mag., 2003, vol. 83, pp. 3387–3405.

    Article  CAS  Google Scholar 

  10. 10.G. Couturier, R. Doherty, C. Maurice, and R. Fortunier: Acta Mater., 2005, vol. 53, pp. 977–989.

    Article  CAS  Google Scholar 

  11. 11.N. Moelans, B. Blanpain, and P. Wollants: Acta Mater., 2007, vol. 55, pp. 2173–2182.

    Article  CAS  Google Scholar 

  12. D.A. Porter, K.E. Easterling, and M.Y. Sherif: in Phase Transformations in Metals and Alloys, Chap. 3, 3rd ed., CRC Press, Boca Raton, 2009.

  13. 13.J.W. Cahn: Acta Metall., 1960, vol. 8, pp. 554-562.

    Article  CAS  Google Scholar 

  14. J.P. Hirth and G.M. Pound: in Condensation and Evaporation: Nucleation and Growth Kinetics, Pergamon, Oxford, 1963, pp. 77–148.

  15. 15.G.H. Gilmer: J. Cryst. Growth, 1980, vol. 49, pp. 465–474.

    Article  CAS  Google Scholar 

  16. 16.S.D. Peteves and R. Abbaschian: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1271-1286.

    Article  CAS  Google Scholar 

  17. 17.H.M. Cuppen, H. Meekes, W.J.P. van Enckevort, E. Vlieg, and H.J. F. Knops: Phys. Rev. B, 2004, vol. 69, p. 245404.

    Article  Google Scholar 

  18. 18.S.B. Lee and Y.-M. Kim: Acta Mater., 2009, vol. 57, pp. 5264–5269.

    Article  CAS  Google Scholar 

  19. 19.S.B. Lee, Y.-M. Kim, D.S. Ko, T.Y. Ahn, Y.W. Kim, and J. Park: Appl. Phys. Lett., 2010, vol. 96, p. 191906.

    Article  Google Scholar 

  20. 20.S.B. Lee, S.J. Yoo, Y.-M. Kim, J.G. Kim, and H.N. Han: Sci. Rep., 2016, vol. 6, p. 26493.

    Article  CAS  Google Scholar 

  21. 21.S.B. Lee, S.J. Yoo, and P. A. van Aken: Europhys Lett (EPL), 2017, vol. 120, p. 16002.

    Article  Google Scholar 

  22. S.B. Lee, S.-Y. Lee, S.J. Yoo, Y. Kim, J.G. Kim, M. Kim, and H.N. Han: Phys. Rev. Mater., 2018, vol. 2, p. 113405.

    Article  CAS  Google Scholar 

  23. 23.R.F. Egerton, P. Li, and M. Malac: Micron, 2004, vol. 35, pp. 399–409.

    Article  CAS  Google Scholar 

  24. 24.T. Malis, S.C. Cheng, and R.F. Egerton: J. Electron. Microsc. Tech., 1988, vol. 8, pp. 193–200.

    Article  CAS  Google Scholar 

  25. 25.N. Fuschillo, M.L. Gimpl, and A.D. McMaster: J. Appl. Phys., 1966, vol. 37, pp. 2044–2051.

    Article  CAS  Google Scholar 

  26. 26.J.J. Aubert and J.J. Bacmann: Revue. Phys. Appl., 1987, vol. 22, pp. 515–518.

    Article  CAS  Google Scholar 

  27. 27.J.D. Garrett, P. Peralta, J.R. Michael, F. Chu, K.J. McClellan, and T.E. Mitchell: J. Cryst. Growth, 1999, vol. 205, pp. 515–522.

    Article  CAS  Google Scholar 

  28. 28.I.M. Kotelianski, V.B. Kravchenko, V.A. Luzanov, E.N. Mirgorodskaia, and A.T. Sobolev: J. Phys.: Conf. Ser., 2008, vol. 97, p. 012266.

    Google Scholar 

  29. 29.R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, and S.P. Ong: Sci. Data, 2016, vol. 3, p. 160080.

    Article  CAS  Google Scholar 

  30. 30.W.K. Burton, N. Cabrera, and F.C. Frank: Philos. Trans. Roy. Soc. Lond. Ser. A, 1951, vol. 243, pp. 299–358.

    Google Scholar 

  31. 31.S.T. Chui and J.D. Weeks: Phys. Rev. B, 1976, vol. 14, pp. 4978–4982.

    Article  Google Scholar 

  32. 32.H. van Beijeren: Phys. Rev. Lett., 1977, vol. 38, pp. 993–996.

    Article  Google Scholar 

  33. 33.J. E. Avron, L.S. Balfour, C.G. Kuper, J. Landau, S.G. Lipson, and L.S. Schulman: Phys. Rev. Lett., 1980, vol. 45, pp. 814–817.

    Article  CAS  Google Scholar 

  34. 34.P.E. Wolf, F. Gallet, S. Balibar, E. Rolley, and P. Nozières: J. Phys. (Paris), 1985, vol. 46, pp. 1987–2007.

    Article  CAS  Google Scholar 

  35. K.L. Merkle and L.J. Thompson: Mater. Lett., 2001, vol. 48, pp. 188–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Transnational Access to the TEMs at the Stuttgart Center for Electron Microscopy of the Max Planck Institute for Solid State Research is gratefully acknowledged. One of the authors (SBL) thanks Peter Kopold for his help at the TEMs at the Stuttgart Center for Electron Microscopy. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717–ESTEEM3. SBL also appreciates financial support from the Korea Basic Science Institute under the R&D program (Project No. D39700) supervised by the Ministry of Science and ICT (MSIT). This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT [Nos. NRF-2019R1A2C2002073 (RIAM) and NRF- 2018R1A2B6006856].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Bo Lee or Heung Nam Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 19, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.B., Jung, J., Yoo, S.J. et al. Migration Pinning and Roughening Transition of a Ni Grain Boundary. Metall Mater Trans A 51, 1067–1074 (2020). https://doi.org/10.1007/s11661-019-05579-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05579-1

Navigation