Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Microbiota in pancreatic health and disease: the next frontier in microbiome research

Abstract

Diseases intrinsic to the pancreas such as pancreatitis, pancreatic cancer and type 1 diabetes mellitus impart substantial health and financial burdens on society but identification of novel mechanisms contributing to these pathologies are slow to emerge. A novel area of research suggests that pancreatic-specific disorders might be modulated by the gut microbiota, either through a local (direct pancreatic influence) or in a remote (nonpancreatic) fashion. In this Perspectives, we examine literature implicating microorganisms in diseases of the pancreas, specifically pancreatitis, type 1 diabetes mellitus and pancreatic ductal adenocarcinoma. We also discuss evidence of an inherent pancreatic microbiota and the influence of the intestinal microbiota as it relates to disease association and development. In doing so, we address pitfalls in the current literature and areas of investigation that are needed to advance a developing field of research that has clinical potential to reduce the societal burden of pancreatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed models of bacterial translocation to the pancreas and the homeostatic host response.
Fig. 2: Interactions between intestinal microbiota and the development of type 1 diabetes mellitus.
Fig. 3: Proposed relationship between bacteria and development of pancreatic cancer.
Fig. 4: Areas of clinical interest to modulate microbiota influence on pancreatic disease.

Similar content being viewed by others

References

  1. Gale, E. A. M. The rise of childhood type 1 diabetes in the 20th century. Diabetes 51, 3353–3361 (2002).

    CAS  PubMed  Google Scholar 

  2. Petrov, M. S. & Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 175–184 (2018).

    Google Scholar 

  3. American Cancer Society. Cancer Facts & Figures 2019. American Cancer Society https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf (2019).

  4. Adeloye, D. et al. Global and regional estimates of the morbidity due to type I diabetes among children aged 0-4 years: a systematic review and analysis. J. Glob. Health 8, 021101 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Karjula, H. et al. Long-term outcome and causes of death for working-age patients hospitalized due to acute pancreatitis with a median follow-up of 10 years. Ann. Surg. 269, 932–936 (2019).

    PubMed  Google Scholar 

  6. American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care 41, 917–928 (2018).

    PubMed Central  Google Scholar 

  7. Willey, V. J. et al. Estimating the real-world cost of diabetes mellitus in the United States during an 8-year period using 2 cost methodologies. Am. Health Drug. Benefits 11, 310–318 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Peery, A. F. et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology 156, 254–272.e11 (2019).

    PubMed  Google Scholar 

  9. Thomas, R. M. et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 39, 1068–1078 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, J. et al. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43, 304–317 (2015).

    CAS  PubMed  Google Scholar 

  12. Ahuja, M. et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 25, 635–646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    CAS  PubMed  Google Scholar 

  15. Tilg, H. & Moschen, A. R. Microbiota and diabetes: an evolving relationship. Gut 63, 1513–1521 (2014).

    CAS  PubMed  Google Scholar 

  16. Tilg, H., Zmora, N., Adolph, T. E. & Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0198-4 (2019).

  17. Sharma, S. & Tripathi, P. Gut microbiome and type 2 diabetes: where we are and where to go? J. Nutr. Biochem. 63, 101–108 (2019).

    CAS  PubMed  Google Scholar 

  18. Marietta, E., Horwath, I., Balakrishnan, B. & Taneja, V. Role of the intestinal microbiome in autoimmune diseases and its use in treatments. Cell Immunol. 339, 50–58 (2018).

    PubMed  Google Scholar 

  19. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sethi, V. et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155, 33–37.e6 (2018).

    CAS  PubMed  Google Scholar 

  22. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Bawagan, J. Babies get critical gut bacteria from their mother at birth, not from placenta, study suggests. Science https://doi.org/10.1126/science.aay9546 (2019).

  24. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    CAS  PubMed  Google Scholar 

  25. Medveczky, P., Szmola, R. & Sahin-Tóth, M. Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem. J. 420, 335–343 (2009).

    CAS  PubMed  Google Scholar 

  26. Doyle, C. J. et al. The proteome of normal pancreatic juice. Pancreas 41, 186–194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stenwall, A., Ingvast, S., Skog, O. & Korsgren, O. Characterization of host defense molecules in the human pancreas. Islets 11, 89–101 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hogan, P. G. The STIM1-ORAI1 microdomain. Cell Calcium 58, 357–367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67, 120–127 (2018).

    CAS  PubMed  Google Scholar 

  30. Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582–588 (2012).

    CAS  PubMed  Google Scholar 

  31. Del Castillo, E. et al. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects. Cancer Epidemiol. Biomarkers Prev. 28, 370–383 (2019).

    PubMed  Google Scholar 

  32. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bravo-Blas, A. et al. Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously. J. Immunol. 202, 260–267 (2019).

    CAS  PubMed  Google Scholar 

  34. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    CAS  PubMed  Google Scholar 

  35. Widdison, A. L., Karanjia, N. D. & Reber, H. A. Routes of spread of pathogens into the pancreas in a feline model of acute pancreatitis. Gut 35, 1306–1310 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Banks, P. A. et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus. Gut 62, 102–111 (2013).

    PubMed  Google Scholar 

  37. Lee, P. J. & Papachristou, G. I. New insights into acute pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 479–496 (2019).

    PubMed  Google Scholar 

  38. Koziel, D., Gluszek, S., Kowalik, A., Chlopek, M. & Pieciak, L. Genetic mutations in SPINK1, CFTR, CTRC genes in acute pancreatitis. BMC Gastroenterol. 15, 70 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Yadav, D., O’Connell, M. & Papachristou, G. I. Natural history following the first attack of acute pancreatitis. Am. J. Gastroenterol. 107, 1096–1103 (2012).

    PubMed  Google Scholar 

  40. Spicak, J. et al. Alcoholic chronic pancreatitis and liver cirrhosis: coincidence and differences in lifestyle. Pancreatology 12, 311–316 (2012).

    CAS  PubMed  Google Scholar 

  41. Veena, A. B., Rajesh, G., Varghese, J., Sundaram, K. R. & Balakrishnan, V. Alcoholic chronic pancreatitis and alcoholic liver cirrhosis: differences in alcohol use habits and patterns in Indian subjects. Pancreas 41, 703–706 (2012).

    PubMed  Google Scholar 

  42. Tu, J. et al. Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: long-term follow-up study. BMC Gastroenterol. 17, 114 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Ahmed Ali, U. et al. Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. Clin. Gastroenterol. Hepatol. 14, 738–746 (2016).

    PubMed  Google Scholar 

  44. Beger, H. G., Bittner, R., Block, S. & Büchler, M. Bacterial contamination of pancreatic necrosis. A prospective clinical study. Gastroenterology 91, 433–438 (1986).

    CAS  PubMed  Google Scholar 

  45. Büchler, M. W. et al. Acute necrotizing pancreatitis: treatment strategy according to the status of infection. Ann. Surg. 232, 619–626 (2000).

    PubMed  PubMed Central  Google Scholar 

  46. Isenmann, R. et al. Prophylactic antibiotic treatment in patients with predicted severe acute pancreatitis: a placebo-controlled, double-blind trial. Gastroenterology 126, 997–1004 (2004).

    CAS  PubMed  Google Scholar 

  47. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  48. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Boyle, C. J. et al. Microbiology of bacterial translocation in humans. Gut 42, 29–35 (1998).

    PubMed  PubMed Central  Google Scholar 

  51. MacFie, J. et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 45, 223–228 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ammori, B. J. et al. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J. Gastrointest. Surg. 3, 252–262 (1999).

    CAS  PubMed  Google Scholar 

  53. Sonika, U. et al. Mechanism of increased intestinal permeability in acute pancreatitis: alteration in tight junction proteins. J. Clin. Gastroenterol. 51, 461–466 (2017).

    CAS  PubMed  Google Scholar 

  54. Liu, H., Li, W., Wang, X., Li, J. & Yu, W. Early gut mucosal dysfunction in patients with acute pancreatitis. Pancreas 36, 192–196 (2008).

    PubMed  Google Scholar 

  55. Zhang, X. M. et al. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed. Environ. Sci. 31, 81–86 (2018).

    PubMed  Google Scholar 

  56. Lankisch, P. G. et al. Natural history of acute pancreatitis: a long-term population-based study. Am. J. Gastroenterol. 104, 2797–2805; quiz 2806 (2009).

    PubMed  Google Scholar 

  57. Jandhyala, S. M. et al. Altered intestinal microbiota in patients with chronic pancreatitis: implications in diabetes and metabolic abnormalities. Sci. Rep. 7, 43640 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Uchida, K., Masamune, A., Shimosegawa, T. & Okazaki, K. Prevalence of IgG4-related disease in Japan based on nationwide survey in 2009. Int. J. Rheumatol. 2012, 358371 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Hart, P. A., Zen, Y. & Chari, S. T. Recent advances in autoimmune pancreatitis. Gastroenterology 149, 39–51 (2015).

    CAS  PubMed  Google Scholar 

  60. Madhani, K. & Farrell, J. J. Autoimmune pancreatitis: an update on diagnosis and management. Gastroenterol. Clin. North. Am. 45, 29–43 (2016).

    PubMed  Google Scholar 

  61. Hamada, S., Masamune, A., Nabeshima, T. & Shimosegawa, T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J. Exp. Med. 244, 113–117 (2018).

    CAS  PubMed  Google Scholar 

  62. Isaiah, A., Parambeth, J. C., Steiner, J. M., Lidbury, J. A. & Suchodolski, J. S. The fecal microbiome of dogs with exocrine pancreatic insufficiency. Anaerobe 45, 50–58 (2017).

    PubMed  Google Scholar 

  63. Nishiyama, H. et al. Supplementation of pancreatic digestive enzymes alters the composition of intestinal microbiota in mice. Biochem. Biophys. Res. Commun. 495, 273–279 (2018).

    CAS  PubMed  Google Scholar 

  64. Sabbah, E. et al. Genetic, autoimmune, and clinical characteristics of childhood- and adult-onset type 1 diabetes. Diabetes Care 23, 1326–1332 (2000).

    CAS  PubMed  Google Scholar 

  65. Patterson, C. C. et al. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 373, 2027–2033 (2009).

    PubMed  Google Scholar 

  66. Cooper, G. S. & Stroehla, B. C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2, 119–125 (2003).

    PubMed  Google Scholar 

  67. Klein, N. P. et al. Rates of autoimmune diseases in Kaiser Permanente for use in vaccine adverse event safety studies. Vaccine 28, 1062–1068 (2010).

    PubMed  Google Scholar 

  68. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hollister, E. B., Gao, C. & Versalovic, J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146, 1449–1458 (2014).

    PubMed  Google Scholar 

  70. de Goffau, M. C. et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57, 1569–1577 (2014).

    PubMed  Google Scholar 

  71. de Goffau, M. C. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62, 1238–1244 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mejía-León, M. E., Petrosino, J. F., Ajami, N. J., Domínguez-Bello, M. G. & de la Barca, A. M. C. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci. Rep. 4, 3814 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Davis-Richardson, A. G. et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front. Microbiol. 5, 678 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Brown, C. T. et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLOS ONE 6, e25792 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Greiner, T. U., Hyötyläinen, T., Knip, M., Bäckhed, F. & Orešič, M. The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice. PLOS ONE 9, e110359 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  PubMed  Google Scholar 

  78. Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).

    CAS  PubMed  Google Scholar 

  79. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  80. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dewhirst, F. E. et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl. Environ. Microbiol. 65, 3287–3292 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    CAS  PubMed  Google Scholar 

  84. Burrows, M. P., Volchkov, P., Kobayashi, K. S. & Chervonsky, A. V. Microbiota regulates type 1 diabetes through Toll-like receptors. Proc. Natl Acad. Sci. USA 112, 9973–9977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  86. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    CAS  PubMed  Google Scholar 

  87. Rawla, P., Sunkara, T. & Gaduputi, V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10, 10–27 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Michaud, D. S. et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 62, 1764–1770 (2013).

    PubMed  Google Scholar 

  89. Ren, Z. et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget 8, 95176–95191 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Stolzenberg-Solomon, R. Z. et al. Tooth loss, pancreatic cancer, and Helicobacter pylori. Am. J. Clin. Nutr. 78, 176–181 (2003).

    CAS  PubMed  Google Scholar 

  91. Hujoel, P. P., Drangsholt, M., Spiekerman, C. & Weiss, N. S. An exploration of the periodontitis-cancer association. Ann. Epidemiol. 13, 312–316 (2003).

    PubMed  Google Scholar 

  92. Ahn, J., Segers, S. & Hayes, R. B. Periodontal disease, porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis 33, 1055–1058 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gaiser, R. A. et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut 68, 2186–2194 (2019).

    PubMed  Google Scholar 

  94. Matthaei, H. et al. miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin. Cancer Res. 18, 4713–4724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Thomas, R. M. & Fleming, J. B. MicroRNA dissects out dangerous pancreatic cysts from all the rest. Clin. Cancer Res. 18, 4482–4484 (2012).

    CAS  PubMed  Google Scholar 

  96. Hata, T. et al. Predicting the grade of dysplasia of pancreatic cystic neoplasms using cyst fluid DNA methylation markers. Clin. Cancer Res. 23, 3935–3944 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tanaka, M. et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 17, 738–753 (2017).

    PubMed  Google Scholar 

  98. Zaura, E., Keijser, B. J. F., Huse, S. M. & Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 9, 259 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Ochoa-Repáraz, J., Mielcarz, D. W., Begum-Haque, S. & Kasper, L. H. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann. Neurol. 69, 240–247 (2011).

    PubMed  Google Scholar 

  100. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tang, W. H. W. & Hazen, S. L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tomkovich, S. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 77, 2620–2632 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Saad, A. M., Turk, T., Al-Husseini, M. J. & Abdel-Rahman, O. Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer 18, 688 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Meng, Z. et al. Tumor location as an indicator of survival in T1 resectable pancreatic ductal adenocarcinoma: a propensity score-matched analysis. BMC Gastroenterol. 19, 59 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Winer, L. K. et al. The impact of tumor location on resection and survival for pancreatic ductal adenocarcinoma. J. Surg. Res. 239, 60–66 (2019).

    PubMed  Google Scholar 

  108. Ou, G. et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am. J. Gastroenterol. 104, 3058–3067 (2009).

    PubMed  Google Scholar 

  109. Nistal, E. et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm. Bowel Dis. 18, 649–656 (2012).

    PubMed  Google Scholar 

  110. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kojima, T. et al. Tight junctions in human pancreatic duct epithelial cells. Tissue Barriers 1, e24894 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Li, J. et al. Fungi in gastrointestinal tracts of human and mice: from community to functions. Microb. Ecol. 75, 821–829 (2018).

    PubMed  Google Scholar 

  113. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    CAS  PubMed  Google Scholar 

  115. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    CAS  PubMed  Google Scholar 

  116. Burris, H. A. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    CAS  PubMed  Google Scholar 

  117. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    CAS  PubMed  Google Scholar 

  118. Grindey, G. B., Hertel, L. W. & Plunkett, W. Cytotoxicity and antitumor activity of 2’,2’-difluorodeoxycytidine (gemcitabine). Cancer Invest. 8, 313 (1990).

    CAS  PubMed  Google Scholar 

  119. Roberts, A. B., Wallace, B. D., Venkatesh, M. K., Mani, S. & Redinbo, M. R. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol. Pharmacol. 84, 208–217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wallace, B. D. et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol. 22, 1238–1249 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  122. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 68, 385–388 (2018).

    PubMed  Google Scholar 

  124. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  125. McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20, e77–e91 (2019).

    PubMed  Google Scholar 

  126. Schmitt, M., Klonowski-Stumpe, H., Eckert, M., Lüthen, R. & Häussinger, D. Disruption of paracellular sealing is an early event in acute caerulein-pancreatitis. Pancreas 28, 181–190 (2004).

    PubMed  Google Scholar 

  127. Martinez, K. B., Leone, V. & Chang, E. B. Microbial metabolites in health and disease: navigating the unknown in search of function. J. Biol. Chem. 292, 8553–8559 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26, 110–130 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, H. et al. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177, 1217–1231.e18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Le, D. T. et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 36, 382–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Besselink, M. G. et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371, 651–659 (2008).

    PubMed  Google Scholar 

  136. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541.e5 (2018).

    PubMed  Google Scholar 

  137. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–662 (2019).

    CAS  PubMed  Google Scholar 

  138. Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17, 260–273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Endesfelder, D. et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63, 2006–2014 (2014).

    CAS  PubMed  Google Scholar 

  140. Alkanani, A. K. et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 64, 3510–3520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hu, Y., Peng, J., Li, F., Wong, F. S. & Wen, L. Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Sci. Rep. 8, 15451 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.J. is funded by NIH grants R01DK073338 and R01AT008623, and the University of Florida Department of Medicine Gatorade Fund. R.M.T. is supported by the American Cancer Society Norma and Rich DiMarco Mentored Research Scholar Grant (MRSG-17-228-01-TBG) and University of Florida Health Cancer Center Pilot Project Grant.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks J. Diana, D. Saxena and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jobin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, R.M., Jobin, C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 17, 53–64 (2020). https://doi.org/10.1038/s41575-019-0242-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0242-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing