Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A TGF-β-MTA1-SOX4-EZH2 signaling axis drives epithelial–mesenchymal transition in tumor metastasis

Abstract

MTA1, SOX4, EZH2, and TGF-β are all potent inducers of epithelial–mesenchymal transition (EMT) in cancer; however, the signaling relationship among these molecules in EMT is poorly understood. Here, we investigated the function of MTA1 in cancer cells and demonstrated that MTA1 overexpression efficiently activates EMT. This activation resulted in a significant increase in the migratory and invasive properties of three different cancer cell lines through a common mechanism involving SOX4 activation, screened from a gene expression profiling analysis. We showed that both SOX4 and MTA1 are induced by TGF-β and both are indispensable for TGF-β-mediated EMT. Further investigation identified that MTA1 acts upstream of SOX4 in the TGF-β pathway, emphasizing a TGF-β-MTA1-SOX4 signaling axis in EMT induction. The histone methyltransferase EZH2, a component of the polycomb (PcG) repressive complex 2 (PRC2), was identified as a critical responsive gene of the TGF-β-MTA1-SOX4 signaling in three different epithelial cancer cell lines, suggesting that this signaling acts broadly in cancer cells in vitro. The MTA1-SOX4-EZH2 signaling cascade was further verified in TCGA pan-cancer patient samples and in a colon cancer cDNA microarray, and activation of genes in this signaling pathway predicted an unfavorable prognosis in colon cancer patients. Collectively, our data uncover a SOX4-dependent EMT-inducing mechanism underlying MTA1-driven cancer metastasis and suggest a widespread TGF-β-MTA1-SOX4-EZH2 signaling axis that drives EMT in various cancers. We propose that this signaling may be used as a common therapeutic target to control epithelial cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MTA1 induces EMT to enhance cancer cell migration and invasion.
Fig. 2: MTA1 increases SOX4 expression during EMT induction.
Fig. 3: MTA1 activates EMT in a SOX4-dependent manner.
Fig. 4: SOX4 is indispensable for TGF-β-induced EMT.
Fig. 5: MTA1 is activated by TGF-β and is indispensable for TGF-β-induced EMT.
Fig. 6: MTA1 mediates SOX4 induction by TGF-β.
Fig. 7: EZH2 is a downstream target of TGF-β-MTA1-SOX4 signaling in cancer.
Fig. 8: Schematic diagram showing the TGF-β-MTA1-SOX4-EZH2 signaling axis in promoting EMT and cancer metastasis.

Similar content being viewed by others

References

  1. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B. 2015;5:402–18.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  5. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.

    Article  CAS  PubMed  Google Scholar 

  6. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parvani JG, Schiemann WP. Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT. Breast Cancer Res. 2013;15:R72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23:768–83.

    Article  CAS  PubMed  Google Scholar 

  10. Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A, Shinnakasu R, et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-β and suppresses T(H)2 differentiation. Nat Immunol. 2012;13:778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    Article  CAS  PubMed  Google Scholar 

  12. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.

    Article  CAS  PubMed  Google Scholar 

  13. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005;118:3573–84.

    Article  CAS  PubMed  Google Scholar 

  14. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. TGF-β tumor suppression through a lethal EMT. Cell 2016;164:1015–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Zhang J, Yang X, Chang YW, Qi M, Zhou Z, et al. SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro. Prostate Cancer Prostatic Dis. 2013;16:301–7.

    Article  CAS  PubMed  Google Scholar 

  16. Jafarnejad SM, Wani AA, Martinka M, Li G. Prognostic significance of Sox4 expression in human cutaneous melanoma and its role in cell migration and invasion. Am J Pathol. 2010;177:2741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res. 2012;72:4597–608.

    Article  CAS  PubMed  Google Scholar 

  18. Shi S, Cao X, Gu M, You B, Shan Y, You Y. Upregulated expression of SOX4 is associated with tumor growth and metastasis in nasopharyngeal carcinoma. Dis Markers. 2015;2015:658141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen H, Blijlevens M, Yang N, Frangou C, Wilson KE, Xu B, et al. Sox4 expression confers bladder cancer stem cell properties and predicts for poor patient outcome. Int J Biol Sci. 2015;11:1363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Xu D, Wang H, Zhang Y, Chang Y, Zhang J, et al. The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget. 2014;5:5153–64.

    PubMed  PubMed Central  Google Scholar 

  21. Xue H, Wang H, Liu J, Liu H, Li C, Han L, et al. MTA1 downregulation inhibits malignant potential in a small cell lung cancer cell line. Oncol Rep. 2015;33:885–92.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Wang H, Huang C, Qian H. Subcellular localization of MTA proteins in normal and cancer cells. Cancer Metastasis Rev. 2014;33:843–56.

    Article  CAS  PubMed  Google Scholar 

  23. Toh Y, Nicolson GL. Properties and clinical relevance of MTA1 protein in human cancer. Cancer Metastasis Rev. 2014;33:891–900.

    Article  CAS  PubMed  Google Scholar 

  24. Song Q, Wang B, Liu M, Ren Z, Fu Y, Zhang P, et al. MTA1 promotes the invasion and migration of oral squamous carcinoma by inducing epithelial-mesenchymal transition via hedgehog signaling pathway. Exp Cell Res. 2019;382:111450.

  25. Deng L, Tang J, Yang H, Cheng C, Lu S, Jiang R, et al. MTA1 modulated by miR-30e contributes to epithelial-to-mesenchymal transition in hepatocellular carcinoma through an ErbB2-dependent pathway. Oncogene. 2017;36:3976–85.

  26. Pakala SB, Singh K, Reddy SD, Ohshiro K, Li DQ, Mishra L, et al. TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene. 2011;30:2230–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng LS, Yang JP, Cao Y, Peng LX, Sun R, Xie P, et al. SPINK6 promotes metastasis of nasopharyngeal carcinoma via binding and activation of epithelial growth factor receptor. Cancer Res. 2017;77:579–89.

    Article  CAS  PubMed  Google Scholar 

  29. Thériault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I, et al. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol. 2011;121:434–43.

    Article  CAS  PubMed  Google Scholar 

  30. Ma J, Zhao J, Lu J, Wang P, Feng H, Zong Y, et al. Cadherin-12 enhances proliferation in colorectal cancer cells and increases progression by promoting EMT. Tumour Biol. 2016;37:9077–88.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi H, Hung MC. Regulation and Role of EZH2 in Cancer. Cancer Res Treat. 2014;46:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gan L, Xu M, Hua R, Tan C, Zhang J, Gong Y, et al. The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J Hematol Oncol. 2018;11:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Z, Hou P, Fan D, Dong M, Ma M, Li H, et al. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ. 2017;24:59–71.

    Article  CAS  PubMed  Google Scholar 

  34. Hasegawa S, Nagano H, Konno M, Eguchi H, Tomokuni A, Tomimaru Y, et al. A crucial epithelial to mesenchymal transition regulator, Sox4/Ezh2 axis is closely related to the clinical outcome in pancreatic cancer patients. Int J Oncol. 2016;48:145–52.

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, et al. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 2017;16:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19:614–8.

    Article  CAS  Google Scholar 

  37. Sen N, Gui B, Kumar R. Role of MTA1 in cancer progression and metastasis. Cancer Metastasis Rev. 2014;33:879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang XY, DeSalle LM, Patel JH, Capobianco AJ, Yu D, Thomas-Tikhonenko A, et al. Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc Natl Acad Sci Usa 2005;102:13968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J. 2006;25:1231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li DQ, Pakala SB, Reddy SD, Ohshiro K, Zhang JX, Wang L, et al. Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis. Proc Natl Acad Sci USA 2011;108:8791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, et al. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene. 2008;27:3405–13.

    Article  CAS  PubMed  Google Scholar 

  42. Cho KB, Cho MK, Lee WY, Kang KW. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 2010;293:230–9.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, et al. HIF-1α promotes epithelial–mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE. 2015;10:e0129603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim IK, Lee YS, Kim HS, Dong SM, Park JS, Yoon DS. Specific protein 1(SP1) regulates the epithelial-mesenchymal transition via lysyl oxidase-like 2(LOXL2) in pancreatic ductal adenocarcinoma. Sci Rep. 2019;9:5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jin Y, Wu D, Yang W, Weng M, Li Y, Wang X, et al. Hepatitis B virus × protein induces epithelial-mesenchymal transition of hepatocellular carcinoma cells by regulating long non-coding RNA. Virol J. 2017;14:238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin L, Wang Z, Jin H, Shi H, Lu Z, Qi Z. MiR-212/132 is epigenetically downregulated by SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Tumour Biol. 2016;37:15719.

  47. Koumangoye RB, Andl T, Taubenslag KJ, Zilberman ST, Taylor CJ, Loomans HA, et al. SOX4 interacts with EZH2 and HDAC3 to suppress microRNA-31 in invasive esophageal cancer cells. Mol Cancer. 2015;14:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (Nos 81502384, 81572842, 81672459, 81872280, 81672338), the National Basic Research Program of China (973 Program) (No. 2015CB553904), the CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2016-I2M-1-001, 2019-I2M-1-003), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (No. 2017PT31029), the Open Issue of State Key Laboratory of Molecular Oncology (No. SKL-KF-2017-16), the Independent Issue of State Key Laboratory of Molecular Oncology (No. SKL-2017-16) and Dalian Science and Technology Project (No. 2015E12SF117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu, Haili Qian or Tao Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, J., Xue, H. et al. A TGF-β-MTA1-SOX4-EZH2 signaling axis drives epithelial–mesenchymal transition in tumor metastasis. Oncogene 39, 2125–2139 (2020). https://doi.org/10.1038/s41388-019-1132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1132-8

This article is cited by

Search

Quick links