Skip to main content
Log in

A unified analysis of the coagulation behaviour of silica hydrosols—when the colloid and polymer science meet

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An allegedly anomalous behaviour of aqueous dispersions of silica has attracted continually a great attention from Thomas Graham’s time. However, even recent coagulation experiments with apparently well-defined colloidal silica spheres are not interpretable when their surface is assumed intact in contact with water. In fact, various explanations such as a hairy layer of polysilicic acid and the hydration layer on the silica surface are well-known but not proven accompaniments of the hydration process. It has been previously suggested (Skvarla, J., Langmuir, 29:8809–8824, 2013) basing on a combination of the soft-sphere model of colloids, surface charge data, and the Flory-Donnan theory that a swellable polyelectrolyte gel-like layer develops inherently on the surface of highly charged silica in aquoeus KCl solutions. Here, we support this rationalization by extending the coagulation analysis. Results are also discussed from the standpoint of approaches associated with the traditional and extended DLVO theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Skvarla J (2013) Quantitative interpretation of anomalous coagulation behavior of colloidal silica using a swellable polyelectrolyte gel model of electrical double layer. Langmuir 29:8809–8824

    CAS  PubMed  Google Scholar 

  2. Marshall CE (1949) The colloid chemistry of the silicate minerals, agronomy. A series of monographs, vol I. Academic, New York 195 pp

    Google Scholar 

  3. Iller RK (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York 866 pp

    Google Scholar 

  4. Legrand APL (ed) (1998) The surface properties of silicas. Wiley, Chichester 470 pp

    Google Scholar 

  5. Bergna HE, Roberts WO (eds) (2006) Colloid silica. Fundamentals and applications. Surfactant science series, vol 131. Taylor & Francis, Boca Raton 912 pp

    Google Scholar 

  6. Allen LH, Matijevic E (1969) Stability of colloidal silica. 1. Effect of simple electrolytes. J Colloid Interface Sci 31:287–296

    CAS  Google Scholar 

  7. Depasse J (1997) Coagulation of colloidal silica by alkaline cations: surface dehydration or interparticle bridging ? J Colloid Interface Sci 194:260–262

    CAS  PubMed  Google Scholar 

  8. Snoswell DRE, Duan J, Fornasiero D, Ralston J (2005) Colloid stability of synthetic titania and the influence of surface roughness. J Colloid Interface Sci 286:526–535

    CAS  PubMed  Google Scholar 

  9. Snoswell DRE, Duan J, Fornasiero D, Ralston J (2003) Colloid stability and the influence of dissolved gas. J Phys Chem 107:2986–2994

    CAS  Google Scholar 

  10. Kihira H, Matijevič E (1992) Kinetics of heterocoagulation. 3. Analysis of effects causing the discrepancy between the theory and experiment. Langmuir 8:2855–2862

    CAS  Google Scholar 

  11. Chang SY, Ring TA, Trujillo EM (1991) Coagulation kinetics of amorphous colloidal silica suspensions with and without hydroxypropyl cellulose polymer. Colloid Polym Sci 269:843–849

    CAS  Google Scholar 

  12. Killmann E, Adolph H (1995) Coagulation and flocculation measurements by photon/correlation spectroscopy – colloidal SiO2 bare and covered by polyethylene oxide. Colloid Polym Sci 273:1071–1079

    CAS  Google Scholar 

  13. Barany S, Cohen Stuart MA, Fleer GJ (1996) Coagulation rate of silica dispersions investigated by single-particle optical sizing. Colloids Surf A Physicochem Eng Asp 106:213–221

    CAS  Google Scholar 

  14. Ludwig P, Peschel G (1988) Determination of the coagulation kinetics in silica hydrosols by photon correlation spectroscopy. Progr Colloid Polym Sci 76:42–46

    CAS  Google Scholar 

  15. Ludwig P, Peschel G (1988) Evidence for secondary minimum coagulation in a silica hydrosol obtained by dynamic light scattering. Progr Colloid Polym Sci 77:146–151

    CAS  Google Scholar 

  16. Trompette JL, Meireles M (2003) Ion-specific effect on the gelation kinetics of concentrated colloidal silica suspensions. J Colloid Interface Sci 263:522–527

    CAS  PubMed  Google Scholar 

  17. Webb JT, Bhatnagar PD, Williams DG (1974) The interpretation of electrokinetic potentials and the inaccuracy of the DLVO theory for anatase sols. J Colloid Interface Sci 49:346–361

    CAS  Google Scholar 

  18. Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M (1997) Absolute aggregation rate constants of hematite particles in aqueous suspensions: a comparison of two different surface morphologies. J Colloid Interface Sci 196:241–253

    CAS  PubMed  Google Scholar 

  19. Kobayashi M, Juillerant F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769

    CAS  PubMed  Google Scholar 

  20. Kobayashi M, Skarba M, Galletto P, Cakara D, Borkovec M (2005) Effects of heat treatment on the aggregation and charging of Stöber-type silica. J Colloid Interface Sci 292:139–147

    CAS  PubMed  Google Scholar 

  21. Kihira H, Ryde N, Matijevic E (1992) Kinetics of heterocoagulation. 2. The effect of the discreteness of surface charge. J Chem Soc Faraday Trans 88:2379–2386

    CAS  Google Scholar 

  22. Churaev NV, Derjaguin BV (1985) Inclusion of structural forces in the theory of stability of colloids and films. J Colloid Inetrface Sci 103:542–553

    CAS  Google Scholar 

  23. Škvarla J, Kmeť S (1992) A new conception unifying the structural surface forces between hydrophobic and hydrophilic colloids. In: Moudgil BM, Somasundaran P (eds) Engineering foundation conference on dispersion and aggregation: fundamentals and applications. American Institute of Chemical Engineers, Palm Coast

    Google Scholar 

  24. van Oss CJ (2006) Interfacial forces in aqueous media2nd edn. CRC Press, Boca Raton 438 pp

    Google Scholar 

  25. Yotsumoto H, Yoon RH (1993) Application of extended DLVO theory. 1. Stability of rutile suspensions. J Colloid Interface Sci 157:426–433

    CAS  Google Scholar 

  26. Yotsumoto H, Yoon RH (1993) Application of extended DLVO theory. 2. Stability of silica suspensions. J Colloid Interface Sci 157:434–441

    CAS  Google Scholar 

  27. Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408

    CAS  Google Scholar 

  28. Horn RG, Smith DT (1990) Measuring surface forces to explore surface chemistry – mica, saphire and silica. J Non-Cryst Solids 120:72–81

    CAS  Google Scholar 

  29. Grabbe A, Horn RG (1993) Double-layer and hydration forces measured between silica sheets subjected to various surface treatments. J Colloid Interface Sci 157:375–383

    CAS  Google Scholar 

  30. Chapel JP (1994) Electrolyte species dependent hydration forces between silica surfaces. Langmuir 10:4237–4243

    CAS  Google Scholar 

  31. McNamee CE, Higashitani K (2015) Time dependence of silica surfaces on their interactions in water and alkaline solutions. Langmuir 31:6064–6071

    CAS  PubMed  Google Scholar 

  32. Healy TW (2006) Stability of aqueous silica sols. In: Bergna HC, Roberts WO (eds) Colloidal silica. Fundamentals and applications, surfactant science series, vol 131, Chapter 20. CRC Press, Boca Raton, pp 247–252

    Google Scholar 

  33. Johnson A-CJH, Greenwood P, Hagström M, Abbas Z, Wall S (2008) Aggregation of nanosized colloidal silica in the presence of various alkali cations investigated by the electrospray technique. Langmuir 24:12798–12806

    CAS  PubMed  Google Scholar 

  34. Vigil G, Xu Z, Steinberg S, Israelachvili J (1994) Interactions of silica surfaces. J Colloid Interface Sci 165:367–385

    CAS  Google Scholar 

  35. Adler JJ, Rabinovich YI, Moudgil BM (2001) Origins of the non-DLVO force between glass surfaces in aqueous solution. J Colloid Interface Sci 237:249–258

    CAS  PubMed  Google Scholar 

  36. Yaminski VV, Ninham BV, Pashley RM (1998) Interaction between surfaces of fused silica in water. Evidence of cold fusion and effects of cold plasma treatment. Langmuir 14:3223–3235

    Google Scholar 

  37. Israelachvili J (1994) Does water structure between surfaces ever give rise to a repulsive hydration force? In: Thiel PA (ed) Interaction of water with solid surfaces, Gordon Research Conference, pp 17–22

  38. Israelachvili J (2011) Intermolecular and surface forces3rd edn. Elsevier, Amsterdam 370 pp

    Google Scholar 

  39. Taran E, Kanda Y, Vakarelski IU, Higashitani K (2007) Nonlinear friction characteristics between silica surfaces in high pH solution. J Colloid Interface Sci 307:425–432

    CAS  PubMed  Google Scholar 

  40. Taran E, Donose BC, Vakarelski IU, Higashitani K (2006) pH dependence of friction forces between silica surfaces in solutions. J Colloid Interface Sci 297:199–203

    CAS  PubMed  Google Scholar 

  41. Lyklema J (1968) The structure of the electrical double layer on porous surfaces. J Electroanal Chem Interfacial Electrochem 16:341–348

    Google Scholar 

  42. Perram JW, Hunter RJ, Wright HJL (1973) Charge and potential at the oxide/solution interface. Chem Phys Lett 23:265–269

    CAS  Google Scholar 

  43. Perram JW (1973) Structure of the double layer at the oxide/water interface. J Chem Soc Faraday Trans 69:993–1003

    CAS  Google Scholar 

  44. Perram JW (1974) The oxide-solution interface. Aust J Chem 27:461–466

    CAS  Google Scholar 

  45. Kleijn JM (1990) The electrical double layer on oxides: site-binding in the porous double layer model. Colloids Surf A Physicochem Eng Asp 51:371–388

    CAS  Google Scholar 

  46. Martinov GA (1978) Electrical double-layer on surface of microporous solids. Kolloid Zh 40:1110–1117

    Google Scholar 

  47. Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, London

    Google Scholar 

  48. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell Univ. Press, Ithaca, 324 pp

    Google Scholar 

  49. Rubinstein M, Colby RH (2003) Polymer physics. Oxford Univ. Press, New York 454 pp

    Google Scholar 

  50. Ohshima H, Makino K, Kondo T (1987) Electrostatic interaction of two parallel plates with surface charge layers. J Colloid Interface Sci 116:196–199

    CAS  Google Scholar 

  51. Ohshima H (2008) Electrostatic interaction between soft particles. J Colloid Interface Sci 328:3–9

    CAS  PubMed  Google Scholar 

  52. Ohshima H (2009) Theory of electrostatics and electrokinetics of soft particles. Sci Technol Adv Mater 10:063001

    PubMed  PubMed Central  Google Scholar 

  53. Skvarla Jiri, Skvarla Juraj (2017) An identification of the soft polyelectrolyte gel-like layer on silica colloids using atomic force and electron microscopy. Ultramicroscopy 181:97–106

    PubMed  Google Scholar 

  54. Škvarla Jiri, Kaňuchová M, Shchukarev A, Brezáni I, Škvarla Juraj (2017) Accumulation of counterions and coions evaluated by cryogenic XPS as a new tool for describing the structure of electric double layer at the silica/water interface. Phys Chem Chem Phys 19:29047–29052

    PubMed  Google Scholar 

  55. Škvarla Jiri, Škvarla Juraj (2017) A swellable polyelectrolyte gel-like layer on the surface of hydrous metal oxides in simple electrolyte solutions: hematite vs. silica colloids. Colloids Surf A Physicochem Eng Aspects 513:463–467

    Google Scholar 

  56. Fernández-Nieves A, Fernández-Barbero A, de las Nieves FJ (2001) Salt effects over the swelling of ionized mesoscopic gels. J Chem Phys 115:7644–7649

    Google Scholar 

  57. Smoluchowski M (1917) Versuch einer mathematischen theorie der koagulationkinetik kolloider lösungen. Z Phys Chem 92:129–168

    Google Scholar 

  58. Fuchs N (1934) Über der stabilität und aufladung der fallung der suspensions kolloide. Z Phys 89:736–743

    Google Scholar 

  59. Fuchs N (1934) Zur theorie der koagulation. Z Phys Chem A 171:199–208

    Google Scholar 

  60. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:633–662

    Google Scholar 

  61. Derjaguin BV (1940) On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobic sols. Trans Faraday Soc 36:203–215

    Google Scholar 

  62. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  63. Gregory J (1981) Approximate expressions for retarded van der Waals interaction. J Colloid Interface Sci 83:138–145

    CAS  Google Scholar 

  64. Tan G-L, Lemon MF, French RH (2003) Optical properties and London dispersion forces of amorphous silica determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry. J Am Ceram Soc 86:1885–1892

    CAS  Google Scholar 

  65. Spielman LA (1970) Viscous interactions in Brownian coagulation. J Colloid Interface Sci 33:562–571

    CAS  Google Scholar 

  66. Honig EP, Roeberson GJ, Wiersema PH (1971) Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J Colloid Interface Sci 36:97–109

    CAS  Google Scholar 

  67. Ohshima H, Ohki S (1985) Donnan potential and surface potential of a charged membrane. Biophys J 47:673–678

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ohki S, Ohshima H (1986) Donnan potential and surface potential of a charged membrane and effect of ion binding on the potential profile. In: Blank M (ed) Electrical double layers in biology. Plenum Press, New York, pp 1–16

    Google Scholar 

  69. Ohshima H (2008) Donnan potential and surface potential of a spherical soft particle in an electrolyte solution. J Colloid Interface Sci 323:92–97

    CAS  PubMed  Google Scholar 

  70. Ohshima H, Miyajima T (1994) Evaluation of the Donnan model for polyelectrolytes using the composite Poisson-Boltzmann equations. Colloid Polym Sci 272:803–811

    CAS  Google Scholar 

  71. Sonnefeld J, Göbel A, Vogelsberger W (1995) Surface charge density on spherical silica particles in aqueous alkali chloride solutions. Part 1. Experimental results. Colloid Polym Sci 273:926–931

    CAS  Google Scholar 

  72. Ohshima H (2016) Approximate analytic expression for the pH-dependent electrophoretic mobility of soft particles. Colloid Polym Sci 294:1997–2003

    CAS  Google Scholar 

  73. Procter HR (1916) The acid-gelatin equilibrium. J Chem Soc Trans 109:307–319

    Google Scholar 

  74. Procter HR (1911) On the action of dilute acids and salt solutions upon gelatin. J Am Leather Chem Assoc:270

  75. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca 672 pp

    Google Scholar 

  76. Rinaudo M (1976) Swelling of polyelectrolyte gels and thermodynamic parameters of solvation. In: Sélégny E (ed) Charged gels and membranes. Riedel Publ, Dordrecht, pp 91–120

    Google Scholar 

  77. Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17:2916–2921

    Google Scholar 

  78. Oppermann W (1992) Swelling behavior and elastic properties of ionic hydrogels. In: Harland RS, Pruďhomme RK (eds) Polyelectrolyte gels: properties, preparation, and applications. American Chem. Soc, Washington, pp 159–170

    Google Scholar 

  79. Brannon-Peppas L, Peppas NA (1991) Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci 46:715–722

    CAS  Google Scholar 

  80. Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2000) Charge controlled swelling of microgel particles. Macromolecules 33:2114–2118

    Google Scholar 

  81. Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2003) Osmotic de-swelling of ionic microgel particles. J Chem Phys 119:10383–10388

    Google Scholar 

  82. Colla T, Likos CN, Levin Y (2014) Equilibrium properties of charged microgels: a Poisson-Boltzmann-Flory approach. J Chem Phys 141:234902

    PubMed  Google Scholar 

  83. Slota P, Marinsky JA (1980, Adv. Chem., Ser. 187) An electrochemical method for the determination of the effective volume of charged polymers in solution. In: Eisenberg A (ed) Ions in polymers. American Chemical Society, Washington DC, pp 311–325

    Google Scholar 

  84. Grignon J, Scallan AM (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25:2829–2843

    CAS  Google Scholar 

  85. Merle Y (1976) Potentiometric titration of polyelectrolyte gels equilibrated with a solution of a strong polyelectrolyte: influence of gel swelling. J Polym Sci Polym Phys Edit 14:1317–1324

    CAS  Google Scholar 

  86. Škvarla J, Marcinová L (2010) A comparison of theoretical and experimental aggregation stability of colloidal silica. Acta Montan Slovaca 15:238–243

    Google Scholar 

  87. Škvarla J (2012) Does the hydrophobic attraction contribute to the interaction between colloidal silica spheres coagulated by an adsorbing cationic surfactant ? Colloids Surf A 397:33–41

    Google Scholar 

  88. Puertas AM, de las Nieves FJ (1997) A new method for calculating kinetic constants within the Rayleigh-Gans-Debye approximation from turbidity measurements. J Phys Condens Matter 9:3313–3320

    CAS  Google Scholar 

  89. Puertas A, Maroto JA, de las Nieves FJ (1998) Theoretical description of the absorbance versus time curve in a homocoagulation process. Colloids Surf A Physicochem Eng Asp 140:23–31

    CAS  Google Scholar 

  90. Tadros TF, Lyklema J (1968) Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations. J Electroanal Chem Interfacial Electrochem 17:267–275

    CAS  Google Scholar 

  91. Abendroth RP (1970) Behavior of a pyrogenic silica in simple electrolytes. J Colloid Interface Sci 34:591–596

    CAS  Google Scholar 

  92. Marinsky JA, Miyajima T, Högfeldt E, Muhammed M (1989) Influence of counterion concentration on the ion-exchange equilibria of crosslinked weak-acid polyelectrolyte gels. React Polym 11:279–289

    CAS  Google Scholar 

  93. Westall J, Hohl H (1980) A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interf Sci 12:265–284

    CAS  Google Scholar 

  94. Marinsky JA (1996) Alternate interpretation of the charge observed in H+ ion concentration level of the aqueous medium of metal oxide suspensions in response to change in the electrolyte concentration levels of the aqueous medium. J Phys Chem 100:1858–1866

    CAS  Google Scholar 

  95. Marinsky JA, Lin FG, Chung K-S (1983) A simple method for classification of the physical state of colloidal and particulate suspensions encountered in practice. J Phys Chem 87:3139–3145

    CAS  Google Scholar 

  96. Lyklema J (2009) Simple Hofmeister series. Chem Phys Lett 467:217–222

    CAS  Google Scholar 

  97. Sonnefeld J (2001) Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements. Colloids Surf A 195:215–225

    CAS  Google Scholar 

  98. Hair ML, Hertl W (1970) Acidity of surface hydroxyl groups. J Phys Chem 74:91–94

    CAS  Google Scholar 

  99. Levine S, Dube GP (1940) Stability properties in hydrophobic sols: application of the mutual energy of two particles. Trans Faraday Soc 35:215–229

    Google Scholar 

  100. Lyklema J (2010) Molecular interpretation of electrokinetic potentials. Curr Opin Colloid Interface Sci 15:125–130

    CAS  Google Scholar 

  101. Lyklema J. Fundamentals of interface and colloid science, vol. II, p 4.43, Fig.4.13

  102. Lyklema J (2017) Interfacial potentials: measuring the immeasurable? Substantia 1:75–93

    Google Scholar 

  103. Tadros TF, Lyklema J (1969) The operative mechanism of glass electrodes and the structure of the electrical double layer on glass. Electroanal Chem Interface Electrochem 22:9–17

    CAS  Google Scholar 

  104. Ellis R (1912) The properties of oil emulsions. I. Electric charge. Z Phys Chem 78:321–352 (in German)

    CAS  Google Scholar 

  105. Powis F (1914) The influence of electrolytes on the potential difference at the oil-water interface of oil emulsion and on a glass-water interface. Z Phys Chem 89:91–110 (in German)

    CAS  Google Scholar 

  106. Hardy WB (1900) A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. Proc Roy Soc 66:110–125

    Google Scholar 

  107. Hardy WB (1900) A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. Zeut Phys Chem 33:385–400

    CAS  Google Scholar 

  108. Bitter JL, Duncan GA, Beltran-Villegas DJ, Fairbrother DH, Bevan MA (2013) Anomalous silica colloid stability and gel layer mediated interactions. Langmuir 29:8835–8844

    CAS  PubMed  Google Scholar 

  109. Ohshima H (2000) Diffuse double-layer interaction between two identical spherical colloidal particles. J Colloid Interface Sci 225:204–208

    CAS  PubMed  Google Scholar 

  110. Nyfeler D, Armbruster T (1998) Silanol groups in minerals and inorganic compounds. Am Mineral 83:119–125

    CAS  Google Scholar 

  111. Urban F, White HL, Stassner EA (1935) Contribution to the theory of surface conductivity at solid–liquid interfaces. J Phys Chem 39:311–330

    CAS  Google Scholar 

  112. Frumkin AN (1940) The study of the double layer at the metal-solution interface by electrochemical and electrokinetic methods. Trans Faraday Soc 35:117–127

    Google Scholar 

  113. Bikerman JJ (1940) Electrokinetic equations and surface conductance. Survey of the diffuse double layer theory of colloidal solutions. Trans Faraday Soc 35:154–160 Kolloid-Z., 1935, 72, 100

    Google Scholar 

  114. Overbeek JTG (1952) On surface conductance. In: Kruyt HR (ed) Colloid science, vol I. Elsevier, Amsterdam (Chapter 5, sec. 12), pp 235–238

    Google Scholar 

  115. Lyklema J (2014) Joint development of insight into colloid stability and surface conduction. Colloids Surfaces A. 440:161–189

    CAS  Google Scholar 

  116. Leroy P, Devan N, Revil A, Bizi M (2013) Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles. J Colloid Interface Sci 410:81–93

    CAS  PubMed  Google Scholar 

  117. Leroy P, Tournassat C, Bizi M (2011) Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. J Colloid Interface Sci 356:442–453

    CAS  PubMed  Google Scholar 

  118. Hsu W-L, Daiguji H, Dunstan DE, Davidson MR, Harvie DJE (2016) Electrokinetics of the silica and aqueous electrolyte solution interface: viscoelectric effects. Adv Colloid Interf Sci 234:108–131

    CAS  Google Scholar 

  119. Makino K, Ohshima H, Kondo T (1987) Potential distribution across membranes with surface charge layers. Effect of ionic solubility. Colloid Polym Sci 265:336–341

    CAS  Google Scholar 

  120. Makino K, Ohshima H, Kondo T (1987) Electrostatic interaction of ion-penetrable membranes. Effects of ionic solubility. Colloid Polym Sci 265:911–915

    CAS  Google Scholar 

  121. Boström M, Deniz V, Franks GV, Ninham BV (2006) Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv Colloid Interf Sci 123-126:5–15

    Google Scholar 

  122. Donnan FG (1911) The theory of membrane equilibrium in the presence of a non-dialyzable electrolyte (in German). Z Elektrochem 17:572–581

    CAS  Google Scholar 

  123. Donnan FG (1924) The theory of membrane equilibria. Chem Rev 1:73–90

    CAS  Google Scholar 

  124. Wilson A (1916) Theory of colloids. J Am Chem Soc 38:1982–1985

    CAS  Google Scholar 

  125. Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675–1678

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Slovak Scientific Grant Agency (Grant 1/0472/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Škvarla.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škvarla, J., Škvarla, J. A unified analysis of the coagulation behaviour of silica hydrosols—when the colloid and polymer science meet. Colloid Polym Sci 298, 123–138 (2020). https://doi.org/10.1007/s00396-019-04582-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04582-7

Keywords

Navigation