Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treg cell-based therapies: challenges and perspectives

Abstract

Cellular therapies using regulatory T (Treg) cells are currently undergoing clinical trials for the treatment of autoimmune diseases, transplant rejection and graft-versus-host disease. In this Review, we discuss the biology of Treg cells and describe new efforts in Treg cell engineering to enhance specificity, stability, functional activity and delivery. Finally, we envision that the success of Treg cell therapy in autoimmunity and transplantation will encourage the clinical use of adoptive Treg cell therapy for non-immune diseases, such as neurological disorders and tissue repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of action of effector T cells versus Treg cells.
Fig. 2: Various Treg cell products for Treg cell-based therapy.
Fig. 3: Characteristics of recombinant T cell receptors versus chimeric antigen receptors.
Fig. 4: The future of Treg cell-based therapy.

Similar content being viewed by others

References

  1. Edinger, M. et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 9, 1144–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B. L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, P. A., Lees, C. J. & Blazar, B. R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Xia, G., He, J. & Leventhal, J. R. Ex vivo-expanded natural CD4+CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts. Am. J. Transpl. 8, 298–306 (2008).

    Article  CAS  Google Scholar 

  5. Xiao, F. et al. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice. PLOS ONE 9, e90387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004). Together with Tang et al. (2004), this paper shows that antigen-specific T reg cells are more potent than polyclonal T reg cells at controlling autoimmune diabetes in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scalapino, K. J., Tang, Q., Bluestone, J. A., Bonyhadi, M. L. & Daikh, D. I. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol. 177, 1451–1459 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Foussat, A. et al. A comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J. Immunol. 171, 5018–5026 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Canavan, J. B. et al. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut 65, 584–594 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Kohm, A. P., Carpentier, P. A., Anger, H. A. & Miller, S. D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Esensten, J. H., Muller, Y. D., Bluestone, J. A. & Tang, Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier. J. Allergy Clin. Immunol. 142, 1710–1718 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Romant, M., Fanelli, Gm, Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).

    Article  CAS  Google Scholar 

  14. Duggleby, R., Danby, R. D., Madrigal, J. A. & Saudemont, A. Clinical grade regulatory CD4+ T cells (Tregs): moving toward cellular-based immunomodulatory therapies. Front. Immunol. 9, 252 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bluestone, J. A. & Tang, Q. Treg cells—the next frontier of cell therapy. Science 362, 154–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Tang, Q. & Vincenti, F. Transplant trials with Tregs: perils and promises. J. Clin. Invest. 127, 2505–2512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015). This paper presents results of a phase I clinical trial in which recent-onset T1D patients were given expanded polyclonal T reg cells and reports the absence of adverse events in patients and the long-term survival of the infused T reg cells in vivo, supporting the good safety profile of this approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stephens, L. A., Malpass, K. H. & Anderton, S. M. Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur. J. Immunol. 39, 1108–1117 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Trenado, A. et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest. 112, 1688–1696 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golshayan, D. et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109, 827–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Sagoo, P. et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci. Transl Med. 3, 83ra42 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noyan, F. et al. Donor-specific regulatory T cells generated on donor B cells are superior to CD4+CD25high cells in controlling alloimmune responses in humanized mice. Transplant. Proc. 45, 1832–1837 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Veerapathran, A., Pidala, J., Beato, F., Yu, X. & Anasetti, C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood 118, 5671–5680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, K., Nguyen, V., Lee, K., Kang, S. & Tang, Q. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am. J. Transplant. 14, 27–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Putnam, A. L. et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transplant. 13, 3010–3020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01795573 (2013).

  27. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02244801 (2014).

  28. Jiang, S. et al. Generation and expansion of human CD4+ CD25+ regulatory T cells with indirect allospecificity: potential reagents to promote donor-specific transplantation tolerance. Transplantation 82, 1738–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995). This article is the first demonstration that a small subset of CD4 + T cells expressing CD25 was essential for the maintenance self-tolerance.

    CAS  PubMed  Google Scholar 

  30. Khattri, R., Cox, T., Yasayko, S. & Ramsdell, F. An essential role for scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003). Together with Khattri et al. (2003) and Hori et al. (2003), this paper was the first to identify the transcription factor FOXP3 as a master regulator for T reg cell development and to show that ectopic expression of FOXP3 was sufficient to confer suppressive functions on conventional T cells.

    Article  CAS  PubMed  Google Scholar 

  33. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001). Together with Wildin et al. (2001), this paper was the first to show that a defect in the FOXP3 gene was the cause of the clinical phenotypes observed in patients with IPEX and in scurfy mice.

    Article  CAS  PubMed  Google Scholar 

  35. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fazilleau, N., Bachelez, H., Gougeon, M. L. & Viguier, M. Cutting edge: size and diversity of CD4+CD25high Foxp3+ regulatory T cell repertoire in humans: evidence for similarities and partial overlapping with CD4+CD25 T cells. J. Immunol. 179, 3412–3416 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suffia, I. J., Reckling, S. K., Piccirillo, C. A., Goldszmid, R. S. & Belkaid, Y. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J. Exp. Med. 203, 777–788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30, 458–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ochando, J. C. et al. Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J. Immunol. 174, 6993–7005 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. & Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA 105, 10113–10118 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Walker, L. S. K. & Sansom, D. M. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 36, 63–70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Legoux, F. P. et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43, 896–908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 196, 255–260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dieckmann, D., Bruett, C. H., Ploettner, H., Lutz, M. B. & Schuler, G. Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J. Exp. Med. 196, 247–253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stassen, M. et al. Human CD25+ regulatory T cells: two subsets defined by the integrins α4β7 or α4β1 confer distinct suppressive properties upon CD4+ T helper cells. Eur. J. Immunol. 34, 1303–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Andersson, J. et al. CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β-dependent manner. J. Exp. Med. 205, 1975–1981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gershon, R. K. & Kondo, K. Infectious immunological tolerance. Immunology 21, 903–914 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, P. et al. Expression of dual TCR on DO11.10 T cells allows for ovalbumin-induced oral tolerance to prevent T cell-mediated colitis directed against unrelated enteric bacterial antigens. J. Immunol. 172, 1515–1523 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Fujio, K. et al. Gene therapy of arthritis with TCR isolated from the inflamed paw. J. Immunol. 177, 8140–8147 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wright, G. P. et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc. Natl Acad. Sci. USA 106, 19078–19083 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tsang, J. Y. et al. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favours transplantation tolerance in mice. J. Clin. Invest. 118, 3619–3628 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, Y. C. et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B cell responses. Blood 125, 1107–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, Y. C. et al. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 92, 77–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brusko, T. M. et al. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer. PLOS ONE 5, e11726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeh, W. I. et al. Avidity and bystander suppressive capacity of human regulatory T cells expressing de novo autoreactive T-cell receptors in type 1 diabetes. Front. Immunol. 8, 1313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hull, C. M. et al. Generation of human islet-specific regulatory T cells by TCR gene transfer. J. Autoimmun. 79, 63–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Plesa, G. et al. TCR affinity and specificity requirements for human regulatory T-cell function. Blood 119, 3420–3430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl Med. 5, 177ra38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Elinav, E., Waks, T. & Eshhar, Z. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134, 2014–2024 (2008). This is the first study involving mouse CAR T reg cells to show that CAR T reg cells accumulate at the site of the target antigen and are capable of bystander suppression, resulting in an amelioration of colitis in a mouse model.

    Article  PubMed  Google Scholar 

  75. Lee, J. C. et al. In vivo inhibition of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Res. 71, 2871–2881 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hombach, A. A., Kofler, D., Rappl, G. & Abken, H. Redirecting human CD4+CD25+ regulatory T cells from the peripheral blood with pre-defined target specificity. Gene Ther. 16, 1088–1096 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016). This study reports the generation of human T reg cells expressing a CAR specific for HLA-A2 that were able to induce alloantigen-specific suppression in a humanized mouse model of transplantation.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dawson, N. A. et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 4, e123672 (2019).

    PubMed Central  Google Scholar 

  79. Noyan, F. et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am. J. Transplant. 17, 917–930 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Boardman, D. A. et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transplant. 17, 931–943 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Yoon, J. et al. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B cell responses to FVIII. Blood 129, 238–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Raffin, C. et al. Development of citrullinated-vimentin-specific CAR for targeting Tregs to treat autoimmune rheumatoid arthritis. J. Immunol. 200 (Suppl.1), 176.17 (2018).

    Google Scholar 

  83. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, 126194 (2019).

    Article  PubMed  Google Scholar 

  84. Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Walker, A. J. et al. Tumour antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Gondek, D. C., Lu, L., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005). This paper shows that T reg cells can exert cytolytic activity in a granzyme B-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  88. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumour clearance. Immunity 27, 635–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Allan, S. E. et al. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol. Ther. 16, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Aarts-Riemens, T., Emmelot, M. E., Verdonck, L. F. & Mutis, T. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4+CD25 cells. Eur. J. Immunol. 38, 1381–1390 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Andersen, K. G., Butcher, T., Betz, A. G. & Marrack, P. Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells. PLOS Biol. 6, e276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beavis, P. A. et al. Resistance to regulatory T cell-mediated suppression in rheumatoid arthritis can be bypassed by ectopic foxp3 expression in pathogenic synovial T cells. Proc. Natl Acad. Sci. USA 108, 16717–16722 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Passerini, L. et al. CD4+ T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer. Sci. Transl Med. 5, 215ra174 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Morikawa, H. et al. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proc. Natl Acad. Sci. USA 111, 5289–5294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arvey, A. et al. Genetic and epigenetic variation in the lineage specification of regulatory T cells. eLife 4, e07571 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cahan, P. et al. CellNet: network biology applied to stem cell engineering. Cell 158, 903–915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Radley, A. H. et al. Assessment of engineered cells using CellNet and RNA-seq. Nat. Protoc. 12, 1089–1102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009). This paper shows that a fraction of T reg cells can lose expression of FOXP3 in autoimmune microenvironments, leading to the generation of exFoxp3 cells displaying a T effector phenotype and a pathogenic potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Noval Rivas, M. et al. Regulatory T cell reprogramming towards a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Miyao, T. et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Van Gool, F. et al. A mutation in the transcription factor Foxp3 drives T helper 2 effector function in regulatory T cells. Immunity 50, 362–377.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. DuPage, M. et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miyara, M. et al. Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells. Oncotarget 8, 104733–104744 (2017).

    Article  PubMed  Google Scholar 

  108. Kasahara, H. et al. Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model. Int. Immunol. 29, 457–469 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Samanta, A. et al. TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc. Natl Acad. Sci. USA 105, 14023–14027 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gao, Z. et al. Synergy between IL-6 and TGF-β signalling promotes FOXP3 degradation. Int. J. Clin. Exp. Pathol. 5, 626–633 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kimura, A. & Kishimoto, T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 40, 1830–1835 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, Q. et al. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumour suppressor gene in malignant T lymphocytes. Proc. Natl Acad. Sci. USA 102, 6948–6953 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hodge, D. R. et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics 4, 387–398 (2007).

    CAS  PubMed  Google Scholar 

  114. Goodman, W. A. et al. IL-6 signalling in psoriasis prevents immune suppression by regulatory T cells. J. Immunol. 183, 3170–3176 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Fujimoto, M. et al. Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum. 58, 3710–3719 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Serada, S. et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 105, 9041–9046 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nishimoto, N. et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 50, 1761–1769 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Ito, H. et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126, 989–996; discussion 947 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hagenstein, J. et al. A novel role for IL-6 receptor classic signalling: induction of RORγt +Foxp3+ Tregs with enhanced suppressive capacity. J. Am. Soc. Nephrol. 30, 1439–1453 (2019).

    Article  Google Scholar 

  121. Abbas, A. K., Trotta, E., R Simeonov, D., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3, eaat1482 (2018).

    Article  PubMed  Google Scholar 

  122. Barron, L. et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J. Immunol. 185, 6426–6430 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Boardman, D. A. & Levings, M. K. Cancer immunotherapies repurposed for use in autoimmunity. Nat. Biomed. Eng. 3, 259–263 (2019).

    Article  PubMed  Google Scholar 

  125. Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signalling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64, 2172–2183 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Grinberg-Bleyer, Y. et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207, 1871–1878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ito, S. et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol. Ther. 22, 1388–1395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kennedy-Nasser, A. A. et al. Ultra low-dose IL-2 for GVHD prophylaxis after allogeneic haematopoietic stem cell transplantation mediates expansion of regulatory T cells without diminishing antiviral and antileukemic activity. Clin. Cancer Res. 20, 2215–2225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Goettel, J. A. et al. Low-dose interleukin-2 ameliorates colitis in a preclinical humanized mouse model. Cell Mol. Gastroenterol. Hepatol. 8, 193–195 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Castela, E. et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 150, 748–751 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article  CAS  Google Scholar 

  136. Humrich, J. Y. et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann. Rheum. Dis. 74, 791–792 (2015).

    Article  PubMed  Google Scholar 

  137. Hartemann, A. et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 295–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02772679 (2016).

  139. Laurence, A. et al. Interleukin-2 signalling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of IL-4 receptor α chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liao, W., Lin, J., Wang, L., Li, P. & Leonard, W. J. Cytokine receptor modulation by interleukin-2 broadly regulates T helper cell lineage differentiation. Nat. Immunol. 12, 551–559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Robb, R. J., Munck, A. & Smith, K. A. T cell growth factor receptors. Quantitation, specificity, and biological relevance. J. Exp. Med. 154, 1455–1474 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Grimm, E. A., Mazumder, A., Zhang, H. Z. & Rosenberg, S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumour cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155, 1823–1841 (1982).

    Article  CAS  PubMed  Google Scholar 

  144. Siegel, J. P., Sharon, M., Smith, P. L. & Leonard, W. J. The IL-2 receptor β chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science 238, 75–78 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signalling clamps. Immunity 42, 826–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol. 135, 2865–2875 (1985).

    CAS  PubMed  Google Scholar 

  149. Ricordi, C. & Strom, T. B. Clinical islet transplantation: advances and immunological challenges. Nat. Rev. Immunol. 4, 259–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Millington, T. et al. Effects of an agonist interleukin-2/Fc fusion protein, a mutant antagonist interleukin-15/Fc fusion protein, and sirolimus on cardiac allograft survival in non-human primates. J. Heart Lung Transplant. 31, 427–435 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody–cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Spangler, J. B. et al. Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J. Immunol. 201, 2094–2106 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Boardman, D. A. & Levings, M. K. Cancer immunotherapies repurposed for use in autoimmunity. Nat. Biomed. Eng. 3, 259–263 (2019).

    Article  PubMed  Google Scholar 

  155. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine–receptor complexes. Science 359, 1037–1042 (2018). In this study, in order to counteract the pleiotropic effect of IL-2, the authors engineer IL-2 cytokine–receptor orthogonal pairs that can selectively interact with one another, providing a discriminating IL-2 signal to engineered T cells expressing the orthogonal IL-2R when in the presence of orthogonal IL-2 cytokine and limiting off-target effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432.e16 (2016). The authors develop a gated receptor system capable of inducing custom response programmes after recognition of a chosen antigen in primary T cells enabling a more controlled therapeutic response of the engineered T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Balashov, K. E., Rottman, J. B., Weiner, H. L. & Hancock, W. W. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA 96, 6873–6878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Frigerio, S. et al. Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat. Med. 8, 1414–1420 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Christen, U., McGavern, D. B., Luster, A. D., von Herrath, M. G. & Oldstone, M. B. A. Among CXCR3 chemokines, IFN-γ-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-γ (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. J. Immunol. 171, 6838–6845 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Homey, B. et al. Up-regulation of macrophage inflammatory protein-3α/CCL20 and CC chemokine receptor 6 in psoriasis. J. Immunol. 164, 6621–6632 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Di Stasi, A. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumour activity in a Hodgkin tumour model. Blood 113, 6392–6402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Craddock, J. A. et al. Enhanced tumour trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumour localization and tumour eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Siddiqui, I., Erreni, M., van Brakel, M., Debets, R. & Allavena, P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumours: importance of the chemokine gradient. J. Immunother. Cancer 4, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Garetto, S. et al. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumour model. Oncotarget 7, 43010–43026 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Idorn, M. et al. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. Oncoimmunology 7, e1450715 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumour. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Arai, Y. et al. Myeloid conditioning with c-kit-targeted CAR-T cells enables donor stem cell engraftment. Mol. Ther. 26, 1181–1197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01740557 (2012).

  172. Hoeppli, R. E. et al. Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am. J. Transplant. 19, 62–76 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Wang, X. et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Paszkiewicz, P. J. et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J. Clin. Invest. 126, 4262–4272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Philip, B. et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl Med. 11, eaau5907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018). The authors show that the endogenous TCR locus of human T cells can be successfully replaced by a TCR of interest using CRISPR–Cas9 non-viral genome targeting to generate TCR-engineered T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). The authors integrate a CAR into the TRAC locus of human T cells using a CRISPR–Cas9 genome targeting approach and observe that having the CAR expression driven by the TCRα promoter enhances the performance of CAR T cells in a mouse model of acute lymphoblastic leukaemia and reduces tonic CAR signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Parmar, S. et al. Third-party umbilical cord blood-derived regulatory T cells prevent xenogenic graft-versus-host disease. Cytotherapy 16, 90–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Parmar, S. et al. Ex vivo fucosylation of third-party human regulatory T cells enhances anti-graft-versus-host disease potency in vivo. Blood 125, 1502–1506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jaiswal, S. et al. CD47 is upregulated on circulating haematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Vo, L. T. & Daley, G. Q. De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood 125, 2641–2648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Timmermans, F. et al. Generation of T cells from human embryonic stem cell-derived haematopoietic zones. J. Immunol. 182, 6879–6888 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Kennedy, M. et al. T lymphocyte potential marks the emergence of definitive haematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 1722–1735 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Nishimura, T. et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12, 114–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Themeli, M. et al. Generation of tumour-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31, 928–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vo, L. T. et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature 553, 506–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Vizcardo, R. et al. Regeneration of human tumour antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12, 31–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Riolobos, L. et al. HLA engineering of human pluripotent stem cells. Mol. Ther. 21, 1232–1241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Torikai, H. et al. Towards eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nosbaum, A. et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196, 2010–2014 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, C. et al. ‘Repair’ Treg cells in tissue injury. Cell. Physiol. Biochem. 43, 2155–2169 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Sharma, A. & Rudra, D. Emerging functions of regulatory T cells in tissue homeostasis. Front. Immunol. 9, 883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Baek, H. et al. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer disease model. Oncotarget 7, 69347–69357 (2016).

    PubMed  PubMed Central  Google Scholar 

  199. Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article  PubMed  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03241784 (2017).

  201. Thonhoff, J. R. et al. Expanded autologous regulatory T lymphocyte infusions in ALS: a phase I, first-in-human study. Neurol. Neuroimmunol. Neuroinflamm. 5, e465 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Young, A., Quandt, Z. & Bluestone, J. A. The balancing act between cancer immunity and autoimmunity in response to immunotherapy. Cancer Immunol. Res. 6, 1445–1452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Baron, U. et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol. 37, 2378–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLOS Biol. 5, e38 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Polansky, J. K. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654–1663 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Toker, A. et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. 190, 3180–3188 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 203, 1701–1711 (2006). This paper identifies CD127 as a biomarker that discriminates human T reg cells (CD127 −/low) from CD4 + conventional T cells (CD127 +) in the peripheral blood and that, when combined with the surface marker CD25, enables the enrichment of T reg cells with high purity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kleinewietfeld, M. et al. CD49d provides access to “untouched” human Foxp3+ Treg free of contaminating effector cells. Blood 113, 827–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Valmori, D., Merlo, A., Souleimanian, N. E., Hesdorffer, C. S. & Ayyoub, M. A peripheral circulating compartment of natural naive CD4 Tregs. J. Clin. Invest. 115, 1953–1962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Hoffmann, P. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 108, 4260–4267 (2006).

    Article  CAS  PubMed  Google Scholar 

  213. Donnelly, C. et al. Optimizing human Treg immunotherapy by Treg subset selection and E-selectin ligand expression. Sci. Rep. 8, 420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Booth, N. J. et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J. Immunol. 184, 4317–4326 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Clark, R. A. & Kupper, T. S. IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood 109, 194–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Scharschmidt, T. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Villalta, S. A. et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci. Transl Med. 6, 258ra142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Tilburgs, T. et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol. 180, 5737–5745 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal–fetal conflict. Cell 150, 29–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sanchez Rodriguez, R. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Schneider, A. et al. The effector T cells of diabetic subjects are resistant to regulation via CD4+FOXP3+ Treg cells. J. Immunol. 181, 7350–7355 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Buckner, J. H. & Nepom, G. T. Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J. Autoimmun. 71, 44–50 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Piguet, P. F. et al. Evolution of collagen arthritis in mice is arrested by treatment with antitumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 77, 510–514 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Mori, L., Iselin, S., De Libero, G. & Lesslauer, W. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J. Immunol. 157, 3178–3182 (1996).

    CAS  PubMed  Google Scholar 

  231. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  232. Barton, A., John, S., Ollier, W. E., Silman, A. & Worthington, J. Association between rheumatoid arthritis and polymorphism of tumour necrosis factor receptor II, but not tumour necrosis factor receptor I, in Caucasians. Arthritis Rheum. 44, 61–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  233. Dieudé, P. et al. Association between tumour necrosis factor receptor II and familial, but not sporadic, rheumatoid arthritis: evidence for genetic heterogeneity. Arthritis Rheum. 46, 2039–2044 (2002).

    Article  CAS  PubMed  Google Scholar 

  234. Komata, T., Tsuchiya, N., Matsushita, M., Hagiwara, K. & Tokunaga, K. Association of tumour necrosis factor receptor 2 (TNFR2) polymorphism with susceptibility to systemic lupus erythematosus. Tissue Antigens 53, 527–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  235. Sashio, H. et al. Polymorphisms of the TNF gene and the TNF receptor superfamily member 1B gene are associated with susceptibility to ulcerative colitis and Crohn’s disease, respectively. Immunogenetics 53, 1020–1027 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. Annunziato, F. et al. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med. 196, 379–387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nagar, M. et al. TNF activates a NF-κB-regulated cellular program in human CD45RA regulatory T cells that modulates their suppressive function. J. Immunol. 184, 3570–3581 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Chen, X. et al. TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T. cell phenotype in the inflammatory environment. J. Immunol. 190, 1076–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  239. Okubo, Y., Mera, T., Wang, L. & Faustman, D. L. Homogeneous expansion of human T-regulatory cells via tumour necrosis factor receptor 2. Sci. Rep. 3, 3153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jeffrey A. Bluestone.

Ethics declarations

Competing interests

J.A.B. is a stock holder and member of the Board of Directors on Rheos Medicines; a stock holder and member of the Board of Directors for Provention Bio; and a stock holder and member of the Scientific Advisory Boards of Vir Therapeutics, Arcus Biotherapeutics, Quentis Therapeutics, Solid Biosciences and Celsius Therapeutics (Founder). J.A.B. owns stock in MacroGenics Inc., Vir Therapeutics, Arcus Biotherapeutics, Quentis Therapeutics, Solid Biosciences and Celsius Therapeutics. C.R. and L.T.V. declare no competing interests. J.A.B is the President and CEO of a newly formed biotech company targeting Treg therapy for the treatment of autoimmune and other immune disorders.

Additional information

Peer review information

Nature Reviews Immunology thanks M. Levings and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Direct allospecificity

A process by which donor-derived antigen-presenting cells present allogeneic major histocompatibility complex–peptide complexes.

Indirect allospecificity

A process by which host-derived antigen-presenting cells present self-major histocompatibility complex–allogeneic peptide complexes.

Trogocytosis

A process whereby lymphocytes physically extract surface molecules from antigen-presenting cells.

Infectious tolerance

A phenomenon in which a tolerance-inducing state is transferred from one cell population to another.

Pauciclonal

The presentation of limited clonal variation.

Domain swap interface

The interface of a three-dimensional process by which two identical protein chains exchange part of their structure to form an intertwined dimer or higher-order oligomer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffin, C., Vo, L.T. & Bluestone, J.A. Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol 20, 158–172 (2020). https://doi.org/10.1038/s41577-019-0232-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0232-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing