Skip to main content

Advertisement

Log in

The triple role of glutathione S-transferases in mammalian male fertility

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Male idiopathic infertility accounts for 15–25% of reproductive failure. One of the factors that has been linked to this condition is oxidative stress (OS), defined as the imbalance between antioxidants and reactive oxygen species. Amongst the different factors that protect the cell against OS, the members of the glutathione S-transferase (GST) superfamily play an important role. Interestingly, reduction or lack of some GSTs has been associated to infertility in men. Therefore, and to clarify the relationship between GSTs and male fertility, the aim of this work is to describe the role that GSTs play in the male reproductive tract and in sperm physiology. To that end, the present review provides a novel perspective on the triple role of GSTs (detoxification, regulation of cell signalling and fertilisation), and reports their localisation in sperm, seminal plasma and the male reproductive tract. Furthermore, we also tackle the existing correlation between some GST classes and male fertility. Due to the considerable impact of GSTs in human pathology and their tight relationship with fertility, future research should address the specific role of these proteins in male fertility, which could result in new approaches for the diagnosis and/or treatment of male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aitken RJ, Smith TB, Jobling MS et al (2014) Oxidative stress and male reproductive health. Asian J Androl 16:31–38. https://doi.org/10.4103/1008-682X.122203

    Article  CAS  PubMed  Google Scholar 

  2. Ghuman N, Ramalingam M (2017) Male infertility. Obstet Gynaecol Reprod Med 28:7–14. https://doi.org/10.1016/j.ogrm.2017.10.007

    Article  Google Scholar 

  3. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8. https://doi.org/10.1016/S0026-0495(00)80077-3

    Article  CAS  PubMed  Google Scholar 

  4. Sanocka D, Kurpisz M (2004) Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2:1–7. https://doi.org/10.1186/1477-7827-2-12

    Article  Google Scholar 

  5. Griveau JF, Le Lannou D (1997) Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl 20:61–69. https://doi.org/10.1046/j.1365-2605.1997.00044.x

    Article  CAS  PubMed  Google Scholar 

  6. García Rodríguez A, de la Casa M, Johnston S et al (2019) Association of polymorphisms in genes coding for antioxidant enzymes and human male infertility. Ann Hum Genet 83:63–72. https://doi.org/10.1111/ahg.12286

    Article  CAS  PubMed  Google Scholar 

  7. Kodama H, Kuribayashi Y, Gagnon C (1996) Effect of sperm lipid peroxidation on fertilization. J Androl 17:151–157. https://doi.org/10.1002/j.1939-4640.1996.tb01764.x

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x

    Article  CAS  PubMed  Google Scholar 

  9. Smith MA, Perry G, Pryor WA (2016) Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 28:1–10. https://doi.org/10.1016/S0891-5849(02)00793-1

    Article  Google Scholar 

  10. Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxidants Redox Signal. https://doi.org/10.1089/ars.2010.3186

    Article  Google Scholar 

  11. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857

    Article  CAS  PubMed  Google Scholar 

  12. Shaha C, Suri A, Talwar GP (1988) Identification of sperm antigens that regulate fertility. Int J Androl 11:479–491. https://doi.org/10.1111/j.1365-2605.1988.tb01022.x

    Article  CAS  PubMed  Google Scholar 

  13. Raijmakers MTM, Roelofs HMJ, Steegers EAP et al (2003) Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril 79:169–172. https://doi.org/10.1016/S0015-0282(02)04404-7

    Article  PubMed  Google Scholar 

  14. Dierickx P (1982) Soluble glutathione S-transferases from rat testes: isoenzyme pattern and lack of inducibility by drug metabolizing enzyme inducers. Toxicol Res Appl 4:47–51

    CAS  Google Scholar 

  15. Hemachand T, Shaha C (2003) Functional role of sperm surface glutathione S-transferases and extracellular glutathione in the haploid spermatozoa under oxidative stress. FEBS Lett 538:14–18. https://doi.org/10.1016/S0014-5793(03)00103-0

    Article  CAS  PubMed  Google Scholar 

  16. Adler V, Yin Z, Fuchs SY et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334. https://doi.org/10.1093/emboj/18.5.1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luna C, Mendoza N, Casao A et al (2017) c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways link capacitation with apoptosis and seminal plasma proteins protect sperm by interfering with both routes. Biol Reprod 96:800–815. https://doi.org/10.1093/biolre/iox017

    Article  PubMed  Google Scholar 

  18. Hemachand T, Gopalakrishnan B, Salunke DM et al (2002) Sperm plasma-membrane-associated glutathione S-transferases as gamete recognition molecules. J Cell Sci 115:2053–2065

    CAS  PubMed  Google Scholar 

  19. Petit FM, Serres C, Bourgeon F et al (2013) Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod 28:852–865. https://doi.org/10.1093/humrep/des452

    Article  CAS  PubMed  Google Scholar 

  20. Hamilton LE, Suzuki J, Aguila L et al (2019) Sperm-borne glutathione-S-transferase omega 2 accelerates the nuclear decondensation of spermatozoa during fertilization in mice. Biol Reprod 101:368–376. https://doi.org/10.1093/biolre/ioz082

    Article  PubMed  Google Scholar 

  21. Combes B, Stakelum GS (1961) A liver enzyme that conjugates sulfobromophthalein sodium with glutathione. J Clin Invest 40:981–988. https://doi.org/10.1172/JCI104337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266. https://doi.org/10.1016/j.bbagen.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  23. Mannervik B, Board PG, Hayes JD et al (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401:1–8. https://doi.org/10.1016/S0076-6879(05)01001-3

    Article  CAS  PubMed  Google Scholar 

  24. Morel F, Rauch C, Petit E et al (2004) Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem 279:16246–16253. https://doi.org/10.1074/jbc.M313357200

    Article  CAS  PubMed  Google Scholar 

  25. Mannervik B, Jensson H (1982) Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol. J Biol Chem 257:9909–9912

    CAS  PubMed  Google Scholar 

  26. Mannervik B, Danielson UH (1988) Glutathione transferases—structure and catalytic activity. Crit Rev Biochem 23:283–337. https://doi.org/10.3109/10409238809088226

    Article  CAS  Google Scholar 

  27. Di Pietro G, LA Magno V, Rios-Santos F (2010) Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol 6:153–170. https://doi.org/10.1517/17425250903427980

    Article  CAS  PubMed  Google Scholar 

  28. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:521–600. https://doi.org/10.3109/10409239509083492

    Article  Google Scholar 

  29. Wongsantichon J, Ketterman AJ (2005) Alternative splicing of glutathione S-transferases. Methods Enzymol 401:100–116. https://doi.org/10.1016/S0076-6879(05)01006-2

    Article  CAS  PubMed  Google Scholar 

  30. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:733–745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  Google Scholar 

  31. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:506–515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  32. Sheehan D, Meade G, Foley V, Dowd C (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16. https://doi.org/10.1042/0264-6021:3600001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mukhtar H, Lee IP, Bend JR (1978) Glutathione S-transferase activities in rat and mouse sperm and human semen. Biochem Biophys Res Commun 83:1093–1098. https://doi.org/10.1016/0006-291X(78)91507-3

    Article  CAS  PubMed  Google Scholar 

  34. Aravinda S, Gopalakrishnan B, Dey CS et al (1995) A testicular protein important for fertility has glutathione S-transferase activity and is localized extracellularly in the seminiferous tubules. J Biol Chem 270:15675–15685. https://doi.org/10.1074/jbc.270.26.15675

    Article  CAS  PubMed  Google Scholar 

  35. Fulcher KD, Welch JE, Klapper DG et al (1995) Identification of a unique μ-class glutathione S-transferase in mouse spermatogenic cells. Mol Reprod Dev 42:415–424. https://doi.org/10.1002/mrd.1080420407

    Article  CAS  PubMed  Google Scholar 

  36. Gopalakrishnan B, Aravinda S, Pawshe CH et al (1998) Studies on glutathione S-transferase important for sperm function: evidence of catalytic activity-independent functions. Biochem J 329:231–241. https://doi.org/10.1042/bj3290231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar R, Singh VK, Atreja SK (2014) Glutathione-S-transferase: role in buffalo (Bubalus bubalis) sperm capacitation and cryopreservation. Theriogenology 81:587–598. https://doi.org/10.1016/j.theriogenology.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  38. Llavanera M, Delgado-Bermúdez A, Fernandez-Fuertes B et al (2019) GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J Anim Sci Biotechnol. https://doi.org/10.1186/s40104-019-0370-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hamilton LE, Acteau G, Xu W et al (2017) The developmental origin and compartmentalization of glutathione-s-transferase omega 2 isoforms in the perinuclear theca of eutherian spermatozoa. Biol Reprod 97:612–621. https://doi.org/10.1093/biolre/iox122

    Article  PubMed  PubMed Central  Google Scholar 

  40. Protopapas N, Hamilton LE, Warkentin R et al (2019) The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituents. Biol Reprod 100:1461–1472. https://doi.org/10.1093/biolre/ioz052

    Article  PubMed  PubMed Central  Google Scholar 

  41. Batruch I, Lecker I, Kagedan D et al (2011) Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res 10:941–953. https://doi.org/10.1021/pr100745u

    Article  CAS  PubMed  Google Scholar 

  42. Zubkova EV, Robaire B (2004) Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat. Biol Reprod 71:1002–1008. https://doi.org/10.1095/biolreprod.104.028373

    Article  CAS  PubMed  Google Scholar 

  43. Klys HS, Whillis D, Howard G, Harrison DJ (1992) Glutathione S-transferase expression in the human testis and testicular germ cell neoplasia. Br J Cancer 66:589–593. https://doi.org/10.1038/bjc.1992.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu M, Hu Z, Qi L et al (2013) Scanning of novel cancer/testis proteins by human testis proteomic analysis. Proteomics 13:1200–1210. https://doi.org/10.1002/pmic.201200489

    Article  CAS  PubMed  Google Scholar 

  45. Mukherjee SB, Aravinda S, Gopalakrishnan B et al (1999) Secretion of glutathione S-transferase isoforms in the seminiferous tubular fluid, tissue distribution and sex steroid binding by rat GSTM1. Biochem J 340:309. https://doi.org/10.1042/0264-6021:3400309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu Z, Guo R, Ge Y et al (2003) Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis1. Biol Reprod 69:37–47. https://doi.org/10.1095/biolreprod.102.012609

    Article  CAS  PubMed  Google Scholar 

  47. Paz M, Morín M, del Mazo J (2006) Proteome profile changes during mouse testis development. Comp Biochem Physiol 1:404–415. https://doi.org/10.1016/j.cbd.2006.10.002

    Article  CAS  Google Scholar 

  48. Li J, Liu F, Wang H et al (2010) Systematic mapping and functional analysis of a family of human epididymal secretory sperm-located proteins. Mol Cell Proteomics 9:2517–2528. https://doi.org/10.1074/mcp.m110.001719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thimon V, Frenette G, Saez F et al (2008) Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum Reprod 23:1698–1707. https://doi.org/10.1093/humrep/den181

    Article  CAS  PubMed  Google Scholar 

  50. Suryawanshi AR, Khan SA, Gajbhiye RK et al (2011) Differential proteomics leads to identification of domain-specific epididymal sperm proteins. J Androl 32:240–259. https://doi.org/10.2164/jandrol.110.010967

    Article  CAS  PubMed  Google Scholar 

  51. Dacheux JL, Belleannée C, Jones R et al (2009) Mammalian epididymal proteome. Mol Cell Endocrinol 306:45–50. https://doi.org/10.1016/j.mce.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  52. Utleg AG, Yi EC, Xie T et al (2003) Proteomic analysis of human prostasomes. Prostate 56:150–161. https://doi.org/10.1002/pros.10255

    Article  CAS  PubMed  Google Scholar 

  53. Carlsson L, Ronquist G, Stridsberg M, Johansson L (1997) Motility stimulant effects of prostasome inclusion in swim-up medium on cryopreserved human spermatozoa. Arch Androl 38:215–221. https://doi.org/10.3109/01485019708994880

    Article  CAS  PubMed  Google Scholar 

  54. Cross N, Mahasreshti P (1997) Prostasome fraction of human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist progesterone. Arch Androl 39:30–44. https://doi.org/10.3109/01485019708987900

    Article  Google Scholar 

  55. Crocitto LE, Korns D, Kretzner L et al (2004) Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology 64:821–825. https://doi.org/10.1016/j.urology.2004.05.007

    Article  PubMed  Google Scholar 

  56. Armstrong RN, Morgenstern R, Board PG (2017) Glutathione transferases. In: McQueen C (ed) Comprehensive toxicology, 3rd edn. Elsevier, Amsterdam, pp 326–362

    Google Scholar 

  57. Maselli J, Hales BF, Chan P, Robaire B (2012) Exposure to bleomycin, etoposide, and cis-platinum alters rat sperm chromatin integrity and sperm head protein profile1. Biol Reprod 86:1–10. https://doi.org/10.1095/biolreprod.111.098616

    Article  CAS  Google Scholar 

  58. Sun Z, Li S, Yu Y et al (2018) Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92:169–180. https://doi.org/10.1007/s00204-017-2054-2

    Article  CAS  PubMed  Google Scholar 

  59. Knapen MFCM, Zusterzeel PLM, Peters WHM, Steegers EAP (1999) Glutathione and glutathione-related enzymes in reproduction: a review. Eur J Obstet Gynecol Reprod Biol 82:171–184. https://doi.org/10.1016/S0301-2115(98)00242-5

    Article  CAS  PubMed  Google Scholar 

  60. Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353:411–416. https://doi.org/10.1042/0264-6021:3530411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jeulin C, Soufir JC, Weber P et al (1989) Catalase activity in human spermatozoa and seminal plasma. Gamete Res 24:185–196. https://doi.org/10.1002/mrd.1120240206

    Article  CAS  PubMed  Google Scholar 

  62. O’Flaherty C, Rico de Souza A (2010) Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod 84:238–247. https://doi.org/10.1095/biolreprod.110.085712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44. https://doi.org/10.1080/02699050500284218

    Article  CAS  PubMed  Google Scholar 

  64. Chen W, Ni Y, Pan Y et al (2005) GABA, progesterone and zona pellucida activation of PLA 2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa. FEBS Lett 579:4692–4700. https://doi.org/10.1016/j.febslet.2005.06.090

    Article  CAS  PubMed  Google Scholar 

  65. De Lamirande E, Gagnon C (2002) The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod 8:124–135. https://doi.org/10.1093/molehr/8.2.124

    Article  Google Scholar 

  66. Nixon B, Bielanowicz A, Anderson AL et al (2010) Elucidation of the signaling pathways that underpin capacitation-associated surface phosphotyrosine expression in mouse spermatozoa. J Cell Physiol 224:71–83. https://doi.org/10.1002/jcp.22090

    Article  CAS  PubMed  Google Scholar 

  67. Almog T, Lazar S, Reiss N et al (2008) Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J Biol Chem 283:14479–14489. https://doi.org/10.1074/jbc.M710492200

    Article  CAS  PubMed  Google Scholar 

  68. Plessis SS, Page C, Franken DR (2002) Extracellular signal-regulated kinase activation involved in human sperm-zona pellucida binding. Andrologia 34:55–59. https://doi.org/10.1046/j.0303-4569.2001.00475.x

    Article  PubMed  Google Scholar 

  69. Elsby R, Kitteringham NR, Goldring CE et al (2003) Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278:22243–22249. https://doi.org/10.1074/jbc.M301211200

    Article  CAS  PubMed  Google Scholar 

  70. Desmots F, Rissel M, Gilot D et al (2002) Pro-inflammatory cytokines tumor necrosis factor α and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem 277:17892–17900. https://doi.org/10.1074/jbc.M112351200

    Article  CAS  PubMed  Google Scholar 

  71. Cho S, Lee YH, Park H et al (2001) Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 276:12749–12755. https://doi.org/10.1074/jbc.M005561200

    Article  CAS  PubMed  Google Scholar 

  72. Piaggi S, Raggi C, Corti A et al (2010) Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity. Carcinogenesis 31:804–811. https://doi.org/10.1093/carcin/bgq031

    Article  CAS  PubMed  Google Scholar 

  73. Awasthi YC, Sharma R, Cheng JZ et al (2003) Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Asp Med 24:219–230. https://doi.org/10.1016/S0098-2997(03)00017-7

    Article  CAS  Google Scholar 

  74. Bogaards JJP, Venekamp JC, Van Bladeren PJ (1997) Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the and P1-1. Chem Res Toxicol 10:310–317. https://doi.org/10.1021/tx9601770

    Article  CAS  PubMed  Google Scholar 

  75. Kim EH, Surh YJ (2008) The role of 15-deoxy-Δ12,14-prostaglandin J2, an endogenous ligand of peroxisome proliferator-activated receptor γ, in tumor angiogenesis. Biochem Pharmacol 76:1544–1553. https://doi.org/10.1016/j.bcp.2008.07.043

    Article  CAS  PubMed  Google Scholar 

  76. Straus DS, Pascual G, Li M et al (2002) 15-Deoxy-Delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci 97:4844–4849. https://doi.org/10.1073/pnas.97.9.4844

    Article  Google Scholar 

  77. Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-κB. Cell Death Differ 13:759–772. https://doi.org/10.1038/sj.cdd.4401838

    Article  CAS  PubMed  Google Scholar 

  78. Townsend DM, Manevich Y, He L et al (2008) Novel role for glutathione S-transferase π. J Biol Chem 284:436–445. https://doi.org/10.1074/jbc.m805586200

    Article  PubMed  Google Scholar 

  79. Pajaud J, Kumar S, Rauch C et al (2012) Regulation of signal transduction by glutathione transferases. Int J Hepatol. https://doi.org/10.1155/2012/137676

    Article  PubMed  PubMed Central  Google Scholar 

  80. Richardson DR, Lok HC (2008) The nitric oxide-iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta 1780:638–651. https://doi.org/10.1016/j.bbagen.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  81. Cesareo E, Parker LJ, Pedersen JZ et al (2005) Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J Biol Chem 280:42172–42180. https://doi.org/10.1074/jbc.M507916200

    Article  CAS  PubMed  Google Scholar 

  82. Shaha C, Suri A, Talwar GP (1990) Induction of infertility in female rats after active immunization with 24 kD antigens from rat testes. Int J Androl 13:17–25. https://doi.org/10.1111/j.1365-2605.1990.tb00956.x

    Article  CAS  PubMed  Google Scholar 

  83. Sutovsky P, Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization1. Biol Reprod 56:1503–1512. https://doi.org/10.1095/biolreprod56.6.1503

    Article  CAS  PubMed  Google Scholar 

  84. Yeste M (2013) Boar spermatozoa within the oviductal environment (III): Fertilisation. In: Bonet S, Casas I, Holt WV, Yeste M (eds) Boar reproduction, 1st edn. Springer, Heidelberg, pp 407–467

    Chapter  Google Scholar 

  85. Aydos SE, Ph D, Taspinar M et al (2009) Association of CYP1A1 and glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril 92:541–547. https://doi.org/10.1016/j.fertnstert.2008.07.017

    Article  CAS  PubMed  Google Scholar 

  86. Vani GT, Mukesh N, Siva Prasad B et al (2010) Role of glutathione S-transferase Mu-1 (GSTM1) polymorphism in oligospermic infertile males. Andrologia 42:213–217. https://doi.org/10.1111/j.1439-0272.2009.00971.x

    Article  CAS  Google Scholar 

  87. Kolesnikova LI, Kurashova NA, Bairova TA et al (2017) Role of glutathione-S-transferase family genes in male infertility. Bull Exp Biol Med 163:643–645. https://doi.org/10.1007/s10517-017-3869-9

    Article  CAS  PubMed  Google Scholar 

  88. Safarinejad MR, Shafiei N, Safarinejad S (2010) The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet 55:565–570. https://doi.org/10.1038/jhg.2010.59

    Article  CAS  PubMed  Google Scholar 

  89. Lakpour N, Mirfeizollahi A, Farivar S et al (2013) The association of seminal plasma antioxidant levels and sperm chromatin status with genetic variants of GSTM1 and GSTP1 (Ile105Val and Ala114Val) in infertile men with oligoasthenoteratozoospermia. Dis Markers 34:205–210. https://doi.org/10.3233/DMA-120954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang M, Wang S, Wang W et al (2012) The glutathione-S-transferase gene polymorphisms (GSTM1 and GSTT1) and idiopathic male infertility risk: a meta-analysis. Gene 511:218–223. https://doi.org/10.1016/j.gene.2012.09.054

    Article  CAS  PubMed  Google Scholar 

  91. Kan HP, Wu FL, Bin Guo W et al (2013) Null genotypes of GSTM1 and GSTT1 contribute to male factor infertility risk: a meta-analysis. Fertil Steril 99:690–696. https://doi.org/10.1016/j.fertnstert.2012.10.037

    Article  CAS  PubMed  Google Scholar 

  92. Song X, Zhao Y, Cai Q et al (2013) Association of the glutathione S-transferases M1 and T1 polymorphism with male infertility: a meta-analysis. J Assist Reprod Genet 30:131–141. https://doi.org/10.1007/s10815-012-9907-7

    Article  PubMed  Google Scholar 

  93. Aydemir B, Onaran I, Kiziler AR et al (2007) Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype. Asian J Androl 9:108–115. https://doi.org/10.1111/j.1745-7262.2007.00237.x

    Article  CAS  PubMed  Google Scholar 

  94. Rubes J, Selevan SG, Sram RJ et al (2007) GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 625:20–28. https://doi.org/10.1016/j.mrfmmm.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  95. Paracchini V, Chang SS, Santella RM et al (2005) GSMT1 deletion modifies the levels of polycyclic aromatic hydrocarbon-DNA adducts in human sperm. Mutat Res Genet Toxicol Environ Mutagen 586:97–101. https://doi.org/10.1016/j.mrgentox.2005.06.008

    Article  CAS  Google Scholar 

  96. Botta T, Blescia S, Martínez-Heredia J et al (2009) Identificación de diferencias proteómicas en muestras oligozoospérmicas. Rev Int Androl 7:14–19. https://doi.org/10.1016/S1698-031X(09)70257-2

    Article  Google Scholar 

  97. Agarwal A, Sharma R, Durairajanayagam D et al (2015) Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 13:1–22. https://doi.org/10.1186/s12958-015-0007-2

    Article  CAS  Google Scholar 

  98. Intasqui P, Camargo M, Antoniassi MP et al (2016) Association between the seminal plasma proteome and sperm functional traits. Fertil Steril 105:617–628. https://doi.org/10.1016/j.fertnstert.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  99. Kwon WS, Oh SA, Kim YJ et al (2015) Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep 5:1–10. https://doi.org/10.1038/srep13821

    Article  Google Scholar 

  100. Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. https://doi.org/10.1038/s41389-017-0025-3

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pannala VR, Dash RK (2015) Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide. Free Radic Biol Med 78:42–55. https://doi.org/10.1016/j.freeradbiomed.2014.10.508

    Article  CAS  PubMed  Google Scholar 

  102. Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with GST. Proc Natl Acad Sci 101:3780–3785. https://doi.org/10.1073/pnas.0400181101

    Article  CAS  PubMed  Google Scholar 

  103. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  104. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygenin the Fenton reaction. Free Radic Biol Med 22:885–888. https://doi.org/10.1016/S0891-5849(96)00432-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the European Commission (H2020-MSCA-IF-79212); the Ministry of Science, Innovation and Universities, Spain (Grants RYC-2014-15581, AGL2016-81890-REDT, AGL2017-88329-R and FJCI-2017-31689); and Regional Government of Catalonia, Spain (2017-SGR-1229). The authors would also like to thank Servier Medical Art for their image bank used to create all figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Yeste.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Confirmed transcript variants of GSTA1-GSTA5. Boxes represent exons and lines represent introns. In all family members, the first transcript variant corresponds to the canonical variant. Information was retrieved from RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) [30] and Uniprot (https://www.uniprot.org/) [31] databases (TIFF 96 kb)

Supplementary Figure 2

Confirmed transcript variants of GSTM1-GSTM5. Boxes represent exons and lines represent introns. In all family members, the first transcript variant corresponds to the canonical variant. The red transcript variants do not codify for any isoform. Information was retrieved from RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) [30] and Uniprot (https://www.uniprot.org/) [31] databases (TIFF 128 kb)

Supplementary Figure 3

Confirmed transcript variants of GSTO1, GSTO2, GSTP1 and GSTS1. Boxes represent exons and lines represent introns. In all family members, the first transcript variant corresponds to the canonical variant. Information was retrieved from RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) [30] and Uniprot (https://www.uniprot.org/) [31] databases. (TIFF 101 kb)

Supplementary Figure 4

Confirmed transcript variants of GSTT1, GSTT2 and GSTZ1. Boxes represent exons and lines represent introns. In all family members, the first transcript variant corresponds to the canonical variant. Information was retrieved from RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) [30] and Uniprot (https://www.uniprot.org/) [31] databases (TIFF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llavanera, M., Mateo-Otero, Y., Bonet, S. et al. The triple role of glutathione S-transferases in mammalian male fertility. Cell. Mol. Life Sci. 77, 2331–2342 (2020). https://doi.org/10.1007/s00018-019-03405-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03405-w

Keywords

Navigation