Skip to main content
Log in

Interfacial Interactions Between Inclusions Comprising TiO2 or TiN and the Mold Flux During the Casting of Titanium-Stabilized Stainless Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Interfacial properties play a key role in determining the solubility of solids in liquids for both low- and high-temperature processes. In this study, the interfacial interactions between inclusions comprising TiO2 or TiN and the mold flux were investigated. The results of sessile drop tests show that the wettability of the mold flux on the TiO2 substrate was better than that on the TiN substrate when the temperature was below 1503 K. However, the contact angle on the TiN substrate decreased more than that on the TiO2 substrate when the temperature was above 1503 K due to the enhancement of the interfacial reaction. The thermodynamic calculations suggest that the reactions of TiN with O2 and SiO2 resulted in a bubbling phenomenon during the TiN sessile drop test. The scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) results show that the final products of the interfacial interaction between the mold flux and the TiO2 substrate comprised perovskites, whereas those for the TiN substrate comprised perovskites and SiTi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] B. Ozturk, R. Matway and R. J. Fruehan: Metall. Mater. Trans. B, 1995, vol.26, pp.563-567.

    Article  CAS  Google Scholar 

  2. [2] Q. Wang, Y. J. Lu, S. P. He, K. C. Mills and Z. S. Li: Ironmak. Steelmak., 2011, vol.38, pp.297-301.

    Article  CAS  Google Scholar 

  3. [3] J. O. Jo, W. Y. Kim, D. S. Kim and J. J. Pak: Met. Mater. Int.,2008, vol.14, pp.531-537.

    Article  CAS  Google Scholar 

  4. [4] X. Yin, Y. Sun, Y. Yang, X. Bai, M. Barati and A. Mclean: Metall. Mater. Trans. B, 2016, vol.47, pp.3274-3284.

    Article  Google Scholar 

  5. [5] D. Kruger and A. Garbers-Craig: Metall. Mater. Trans. B, 2017, vol.48, pp.1514-1532.

    Article  Google Scholar 

  6. [6] J. H. Park and Y. Kang: Steel. Res. Int., 2017, vol.88, pp.1700130.

    Article  Google Scholar 

  7. [7] S. Xu, X. Q. Wu, E. H. Han, W. Ke and Y. Katada: Mater. Sci. Eng. A, 2008, vol.490, pp.16-25.

    Article  Google Scholar 

  8. [8] M. B. Leban and R. Tisu: Eng. Fail. Anal., 2013, vol.33, pp.430-438.

    Article  CAS  Google Scholar 

  9. [9] H. Park, J. Y. Park, G. H. Kim and I. Sohn: Steel Res. Int., 2012, vol.83, pp.150-156.

    Article  CAS  Google Scholar 

  10. [10] Z. Wang, Q. Shu and K. Chou: Metall. Mater. Trans. B, 2013, vol.44, pp.606-613.

    Article  CAS  Google Scholar 

  11. [11] J. B. Kim and I. Sohn: J. Non-Cryst. Solids, 2013, vol.379, pp.235-243.

    Article  CAS  Google Scholar 

  12. [12] Z. Hao, W. Chen and C. Lippold: Metall. Mater. Trans. B, 2010, vol.41, pp.805-812.

    Article  CAS  Google Scholar 

  13. [13] M. Sharma, H. A. Dabkowska and N. Dogan: Steel Res. Int., 2019, vol.90, pp.1800367.

    Article  Google Scholar 

  14. [14] Z. Ren, X. Hu, X. Hou, X. Xue and K. Chou: Int. J. Min. Met. Mater., 2014, vol.21, pp.345-352.

    Article  CAS  Google Scholar 

  15. [15] B. Ozturk: Metall. Mater. Trans. B, 1992, vol.23, pp.523-526.

    Article  CAS  Google Scholar 

  16. [16] S. K. Michelic and C. Bernhard: Scanning, 2017, vol.2017, pp.1-14.

    Article  Google Scholar 

  17. [17] W. Wang, E. Gao, L. Zhou, L. Zhang and H. Li: J. Iron Steel Res. Int., 2019, vol.26, pp.335-364.

    Article  Google Scholar 

  18. [18] T. Mukongo, P. C. Pistorius and A. M. Garbers-Craig: Ironmaking& steelmaking, 2004, vol.31, pp.135-143.

    Article  CAS  Google Scholar 

  19. [19] P. Rocabois, J. Lehmann, C. Gatellier and J. P. Teres: Ironmaking& steelmaking, 2003, vol. 30, pp.95-100.

    Article  CAS  Google Scholar 

  20. [20] O. K. Tokovoi and D. V. Shaburov: Steel In Trans., 2013, vol.43, pp.678-680.

    Article  Google Scholar 

  21. [21] Z. Chen, M. Li, X. Wang, S. He and Q. Wang: Metals, 2019, vol.9, pp.635-650.

    Article  Google Scholar 

  22. [22] L. Zhou, J. Li, W. Wang and I. Sohn: Metall. Mater. Trans. B, 2017, vol.48, pp.1943–1950.

    Article  Google Scholar 

  23. [23] W. Wang, J. Li, L. Zhou and J. Yang: Met. Mater. Int., 2016, vol.22, pp.700-706.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the national natural science foundation of China (51874363, U1760202), the Natural Science Foundation of Hunan Province (2019JJ40345), and Hunan Scientific Technology projects (2018RS3022, 2018WK2051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Pan, Z., Wang, W. et al. Interfacial Interactions Between Inclusions Comprising TiO2 or TiN and the Mold Flux During the Casting of Titanium-Stabilized Stainless Steel. Metall Mater Trans B 51, 85–94 (2020). https://doi.org/10.1007/s11663-019-01746-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01746-2

Navigation