Skip to main content
Log in

Ni–Mg–Al Catalysts Effectively Promote Depolymerization of Rice Husk Lignin to Bio-Oil

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic depolymerization of lignin to produce bio-oil, liquid fuels, and aromatic chemicals in high yields is important for a biorefinery to remain competitive. In this study, undoped and Ni-doped catalysts for depolymerization of rice husk lignin (RHL) were developed and analyzed. The results showed that the catalysts had hydrotalcite-like structures with lamellar morphology. With suitable Ni-doping amount, the catalysts had high activity, thus better promoted the depolymerization of RHL. Among all catalysts, the Ni1/4MgAl catalyst could best promote the cleavage of the β-O-4 aryl ether bond in RHL molecule and thus could substantially increase the yields of bio-oil. The depolymerization catalyzed by this catalyst was also found to be temperature-, time-, and solvent-dependent. This study provides information that can be beneficial to the biorefinery industries and may help promote the valorization of lignin.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu C, Hu J, Zhang H, Xiao R (2016) Fuel 182:864–870

    CAS  Google Scholar 

  2. Liu C, Wu S, Zhang H, Xiao R (2019) Fuel Process Technol 191:181–201

    CAS  Google Scholar 

  3. Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Carbohyd Polym 87:1131–1138

    CAS  Google Scholar 

  4. Wang Z, Li J, Barford JP, Hellgradt K, McKay G (2016) Int J Environ Agric Res 2:67–77

    CAS  Google Scholar 

  5. Ullah Z, Man Z, Khan AS, Muhammad N, Mahmood H, Ben Ghanem O, Ahmad P, Hassan Shah M-U, Mamoon Ur R, Raheel M (2019) J Clean Prod 220:620–629

    CAS  Google Scholar 

  6. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Renew Sustain Energy Rev 21:506–523

    CAS  Google Scholar 

  7. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908

    CAS  PubMed  Google Scholar 

  8. Mei Q, Shen X, Liu H, Han B (2019) Chin Chem Lett 30:15–24

    CAS  Google Scholar 

  9. Lu J, Wang M, Zhang X, Heyden A, Wang F (2016) ACS Catal 6:5589–5598

    CAS  Google Scholar 

  10. Luo N, Wang M, Li H, Zhang J, Liu H, Wang F (2016) ACS Catal 6:7716–7721

    CAS  Google Scholar 

  11. Lancefield CS, Ojo OS, Tran F, Westwood NJ (2015) Angew Chem Int Ed Engl 54:258–262

    CAS  PubMed  Google Scholar 

  12. Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Crocker D, Mitchell B, Mohammad J, Cantrell K, Pittman CU Jr (2007) Energy Fuels 22:614–625

    Google Scholar 

  13. Chakar FS, Ragauskas AJ (2004) Ind Crops Prod 20:131–141

    CAS  Google Scholar 

  14. Van den Bosch S, Schutyser W, Koelewijn SF, Renders T, Courtin CM, Sels BF (2015) Chem Commun (Camb) 51:13158–13161

    Google Scholar 

  15. Kim KH, Simmons BA, Singh S (2017) Green Chem 19:215–224

    CAS  Google Scholar 

  16. Naseem A, Tabasum S, Zia KM, Zuber M, Ali M, Noreen A (2016) Int J Biol Macromol 93:296–313

    CAS  PubMed  Google Scholar 

  17. Das L, Kolar P, Osborne J, Sharma-Shivappa R, Classen J (2016) Trans ASABE 59:727–735

    CAS  Google Scholar 

  18. Liu C, Deng Y, Wu S, Mou H, Liang J, Lei M (2016) J Anal Appl Pyrol 118:123–129

    CAS  Google Scholar 

  19. Jiang W, Lyu G, Liu Y, Wang C, Chen J, Lucia LA (2014) Ind Eng Chem Res 53:10328–10334

    CAS  Google Scholar 

  20. Yang J, Zhao L, Liu S, Wang Y, Dai L (2016) Bioresour Technol 212:302–310

    CAS  PubMed  Google Scholar 

  21. Onwudili JA, Williams PT (2014) Green Chem 16:4740–4748

    CAS  Google Scholar 

  22. Kloekhorst A, Heeres HJ (2015) ACS Sustain Chem Eng 3:1905–1914

    CAS  Google Scholar 

  23. Klein I, Saha B, Abu-Omar MM (2015) Catal Sci Technol 5:3242–3245

    CAS  Google Scholar 

  24. Kim JK, Lee JK, Kang KH, Song JC, Song IK (2015) Appl Catal A 498:142–149

    CAS  Google Scholar 

  25. Huang Y-B, Yan L, Chen M-Y, Guo Q-X, Fu Y (2015) Green Chem 17:3010–3017

    CAS  Google Scholar 

  26. Sturgeon MR, O'Brien MH, Ciesielski PN, Katahira R, Kruger JS, Chmely SC, Hamlin J, Lawrence K, Hunsinger GB, Foust TD, Baldwin RM, Biddy MJ, Beckham GT (2014) Green Chem 16:824–835

    CAS  Google Scholar 

  27. Sergeev AG, Hartwig JF (2011) Science 332:439–443

    CAS  PubMed  Google Scholar 

  28. Wang X, Rinaldi R (2012) Chemsuschem 5:1455–1466

    CAS  PubMed  Google Scholar 

  29. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Energy Environ Sci 6:994–1007

    CAS  Google Scholar 

  30. Chen P, Zhang Q, Shu R, Xu Y, Ma L, Wang T (2017) Biores Technol 226:125–131

    CAS  Google Scholar 

  31. Gao S, Zhao J, Wang X, Guo Y, Han Y, Zhou J (2018) Polymers 10:967

    PubMed Central  Google Scholar 

  32. Huang X, Koranyi TI, Boot MD, Hensen EJ (2014) Chemsuschem 7:2276–2288

    CAS  PubMed  Google Scholar 

  33. Huang X, Ouyang X, Hendriks BMS, Gonzalez OMM, Zhu J, Koranyi TI, Boot MD, Hensen EJM (2017) Faraday Discuss 202:141–156

    CAS  PubMed  Google Scholar 

  34. Xiao L-P, Wang S, Li H, Li Z, Shi Z-J, Xiao L, Sun R-C, Fang Y, Song G (2017) ACS Catal 7:7535–7542

    CAS  Google Scholar 

  35. Arturi KR, Strandgaard M, Nielsen RP, Søgaard EG, Maschietti M (2017) J Supercrit Fluids 123:28–39

    CAS  Google Scholar 

  36. Yang X, Feng M, Choi J-S, Meyer HM, Yang B (2019) Fuel 244:528–535

    CAS  Google Scholar 

  37. Zhou M, Sharma BK, Li J, Zhao J, Xu J, Jiang J (2019) Fuel 239:239–244

    CAS  Google Scholar 

  38. Liu X, Jiang Z, Feng S, Zhang H, Li J, Hu C (2019) Fuel 244:247–257

    CAS  Google Scholar 

  39. Wang X, Guo Y, Zhou J, Sun G (2017) RSC Adv 7:8314–8322

    CAS  Google Scholar 

  40. Liu C, Wang X, Lin F, Zhang H, Xiao R (2018) Fuel Process Technol 169:50–57

    CAS  Google Scholar 

  41. Wang X, Du B, Pu L, Guo Y, Li H, Zhou J (2018) J Anal Appl Pyrol 129:13–20

    CAS  Google Scholar 

  42. Kim H, Ralph J (2010) Org Biomol Chem 8:576–591

    CAS  PubMed  Google Scholar 

  43. Mansfield SD, Kim H, Lu F, Ralph J (2012) Nat Protoc 7:1579–1589

    CAS  PubMed  Google Scholar 

  44. Wen JL, Sun SL, Xue BL, Sun RC (2013) Materials (Basel) 6:359–391

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang X, Atay C, Korányi TI, Boot MD, Hensen EJM (2015) ACS Catal 5:7359–7370

    CAS  Google Scholar 

  46. Islam MN, Taki G, Rana M, Park JH (2018) Ind Eng Chem Res 57:4779–4784

    CAS  Google Scholar 

  47. Guo H, Zhang B, Qi Z, Li C, Ji J, Dai T, Wang A, Zhang T (2017) Chemsuschem 10:523–532

    PubMed  Google Scholar 

  48. Ma H, Li H, Zhao W, Li L, Liu S, Long J, Li X (2019) Green Chem 29:1619–1624

    Google Scholar 

  49. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Angew Chem Int Ed Engl 55:8164–8215

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma H, Li H, Zhao W, Li L, Liu S, Long J, Li X (2019) Green Chem 21:658–668

    CAS  Google Scholar 

  51. Asawaworarit P, Daorattanachai P, Laosiripojana W, Sakdaronnarong C, Shotipruk A, Laosiripojana N (2019) Chem Eng J 356:461–471

    CAS  Google Scholar 

  52. Huang X, Korányi TI, Boot MD, Hensen EJM (2015) Green Chem 17:4941–4950

    CAS  Google Scholar 

  53. Hong S, Lian H, Sun X, Pan D, Carranza A, Pojman JA, Mota-Morales JD (2016) RSC Adv 6:89599–89608

    CAS  Google Scholar 

  54. Nakamura T, Kawamoto H, Saka S (2007) J Wood Chem Technol 27:121–133

    CAS  Google Scholar 

  55. Ye Y, Fan J, Chang J (2012) J Anal Appl Pyrol 94:190–195

    CAS  Google Scholar 

  56. Yokoyama T (2014) J Wood Chem Technol 35:27–42

    CAS  Google Scholar 

  57. Ito H, Imai T, Lundquist K, Yokoyama T, Matsumoto Y (2011) J Wood Chem Technol 31:172–182

    CAS  Google Scholar 

  58. Shen X-J, Wang B, Pan-li H, Wen J-L, Sun R-C (2016) RSC Adv 6:45315–45325

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFB0307900), National Natural Science Foundation of China (Nos. 21908014, 31470604), the Liaoning Providence Science and Technology Project (No. 20180550759), the Opening Project of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control (KF201803-5) and the State Key Laboratory of Pulp and Paper Engineering (No. 201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Wang or Jinghui Zhou.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Chen, C., Sun, Y. et al. Ni–Mg–Al Catalysts Effectively Promote Depolymerization of Rice Husk Lignin to Bio-Oil. Catal Lett 150, 1591–1604 (2020). https://doi.org/10.1007/s10562-019-02956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02956-8

Keywords

Navigation