Skip to main content

Advertisement

Log in

Simple synthesis of hierarchical porous carbon with developed graphene domains for high performance supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hierarchical porous carbons with localized graphene structure, high specific surface area and large pore volume are simply synthesized by the means of short-time pyrolysis at moderate temperatures and acid-washing. Citric acid and cobalt acetate were used as carbon source and template precursor, the effect of mass ratio of citric acid/cobalt acetate on the microstructures of the hierarchical porous carbon, including morphology, crystal structure, porosity, specific surface area and surface chemistry, have been investigated. The resultant hierarchical porous carbons possess high specific surface area of 1411 m2/g, a large pore volume of 2.34 cm3/g. Both three-electrode and two-electrode test were conducted to evaluate capacitive performance of the hierarchical porous carbon. The test of three-electrode system with 6 M KOH aqueous solution as electrolyte, the hierarchical porous carbon shows superior specific capacitance up to 239 F/g at 0.1 A/g. In 1 M Na2SO4 aqueous electrolyte. Moreover, the hierarchical porous carbon based two-electrode supercapacitors presents gravimetric energy density of 11.6 Wh/kg and power density of 250 W/kg. This work developed a facile way for high surface areas and large pore volume electrode materials for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Wu, L. Li, J.M. Yan, X.B. Zhang, Adv. Sci. 4, 6 (2017)

    Google Scholar 

  2. C. Zhao, C. Yu, S. Liu, J. Yang, X. Fan, H. Huang, J. Qiu, Adv. Funct. Mater. 25, 44 (2015)

    Google Scholar 

  3. M. Chen, Y. Zhang, L. Xing, Y. Liao, Y. Qiu, S. Yang, W. Li, Adv. Mater. 29, 48 (2017)

    Google Scholar 

  4. Y.B. Tan, J.-M. Lee, J. Mater. Chem. A. 1, 47 (2013)

    Google Scholar 

  5. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 21 (2016)

    Google Scholar 

  6. J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 4 (2014)

    Google Scholar 

  7. Y. Zhang, X. Liu, S. Wang, L. Li, S. Dou, Adv. Energy Mater 7, 21 (2017)

    Google Scholar 

  8. X. He, X. Xie, J. Wang, X. Ma, Y. Xie, J. Gu, N. Xiao, J. Qiu, Nanoscale 11, 14 (2019)

    Google Scholar 

  9. Z. Li, L. Zhang, B. Li, Z. Liu, Z. Liu, H. Wang, Q. Li, Chem. Eng. J. 313, 1242–1250 (2017)

    CAS  Google Scholar 

  10. H. Zhang, H. Su, L. Zhang, B. Zhang, F. Chun, X. Chu, W. He, W. Yang, J. Power Sources 331, 332–339 (2016)

    CAS  Google Scholar 

  11. W. Yang, W. Yang, F. Ding, L. Sang, Z. Ma, G. Shao, Carbon 111, 419–427 (2017)

    CAS  Google Scholar 

  12. H. Su, H. Zhang, F. Liu, F. Chun, B. Zhang, X. Chu, H. Huang, W. Deng, B. Gu, H. Zhang, X. Zheng, M. Zhu, W. Yang, Chem. Eng. J. 322, 73–81 (2017)

    CAS  Google Scholar 

  13. F. Wei, X. He, H. Zhang, Z. Liu, N. Xiao, J. Qiu, J. Power Sources 428, 8–12 (2019)

    CAS  Google Scholar 

  14. Z.L. Yu, S. Xin, Y. You, L. Yu, Y. Lin, D.W. Xu, C. Qiao, Z.H. Huang, N. Yang, S.H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 138, 45 (2016)

    Google Scholar 

  15. K. Zhou, M. Hu, Y. He, L. Yang, C. Han, R. Lv, F. Kang, B. Li, Carbon 129, 667–673 (2018)

    CAS  Google Scholar 

  16. X. He, X. Li, H. Ma, J. Han, H. Zhang, C. Yu, N. Xiao, J. Qiu, J. Power Sources 340, 183–191 (2017)

    CAS  Google Scholar 

  17. L. Ni, R. Wang, H. Wang, C. Sun, B. Sun, X. Guo, S. Jiang, Z. Shi, W. Jing, L. Zhu, S. Qiu, Z. Zhang, Carbon 139, 1152–1159 (2018)

    CAS  Google Scholar 

  18. Z. Chen, S. Zhao, Y. Zhou, C. Yu, W. Zhong, W. Yang, Nanoscale 10, 32 (2018)

    Google Scholar 

  19. P. Wang, J. Xu, F. Xu, W. Zhao, P. Sun, Z. Zhang, M. Qian, F. Huang, Carbon 134, 391–397 (2018)

    CAS  Google Scholar 

  20. O. ASAO, and O. SUGIO, Carbon 19, 5 (1981)

    Google Scholar 

  21. C.J. Thambiliyagodage, S. Ulrich, P.T. Araujo, M.G. Bakker, Carbon 134, 452–463 (2018)

    CAS  Google Scholar 

  22. R. Lopez Anton, J.A. Gonzalez, J.P. Andres, J. Canales-Vazquez, J.A. De Toro, J.M. Riveiro, Nanotechnology 25, 10 (2014)

    Google Scholar 

  23. Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Carbon 67, 119–127 (2014)

    CAS  Google Scholar 

  24. P. Williams, A. Reed, Biomass Bioenergy 30, 2 (2006)

    Google Scholar 

  25. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    CAS  Google Scholar 

  26. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192–8195 (2008)

    CAS  Google Scholar 

  27. B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang, X. Dong, J. Mater. Chem. A. 3, 18 (2015)

    Google Scholar 

  28. M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Conden. Matter Phys. 1, 1 (2010)

    Google Scholar 

  29. R. Hawaldar, P. Merino, M.R. Correia, I. Bdikin, J. Gracio, J. Mendez, J.A. Martin-Gago, M.K. Singh, Sci. Rep. 2, 682 (2012)

    PubMed  PubMed Central  Google Scholar 

  30. M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Carbon 46, 11 (2008)

    Google Scholar 

  31. J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai, W.-K. Yuan, Carbon 45, 4 (2007)

    Google Scholar 

  32. X. He, N. Zhang, X. Shao, M. Wu, M. Yu, J. Qiu, Chem. Eng. J. 297, 121–127 (2016)

    CAS  Google Scholar 

  33. L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Adv. Energy Mater. 1, 3 (2011)

    Google Scholar 

  34. L. Zhong, K. Yang, R. Guan, L. Wang, S. Wang, D. Han, M. Xiao, Y. Meng, ACS Appl. Mater. Interfaces 9, 50 (2017)

    Google Scholar 

  35. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 4, 8 (2011)

    Google Scholar 

  36. N. Mao, H. Wang, Y. Sui, Y. Cui, J. Pokrzywinski, J. Shi, W. Liu, S. Chen, X. Wang, D. Mitlin, Nano Res. 10, 5 (2017)

    Google Scholar 

  37. L.G.H. Staaf, P. Lundgren, P. Enoksson, Nano Energy 9, 128–141 (2014)

    CAS  Google Scholar 

  38. L. Pan, Y. Wang, H. Hu, X. Li, J. Liu, L. Guan, W. Tian, X. Wang, Y. Li, M. Wu, Carbon 134, 345–353 (2018)

    CAS  Google Scholar 

  39. Y. Sun, S. Guo, W. Li, J. Pan, C. Fernandez, R.A. Senthil, X. Sun, J. Power Sources 405, 80–88 (2018)

    CAS  Google Scholar 

  40. X. He, Z. Liu, H. Ma, N. Zhang, M. Yu, M. Wu, Microporous Mesoporous Mater. 236, 134–140 (2016)

    CAS  Google Scholar 

  41. H. Zhang, L. Zhang, J. Chen, H. Su, F. Liu, W. Yang, J. Power Sources 315, 120–126 (2016)

    CAS  Google Scholar 

  42. S. Zuo, J. Chen, W. Liu, X. Li, Y. Kong, C. Yao, Y. Fu, Carbon 129, 199–206 (2018)

    CAS  Google Scholar 

  43. M. Wu, P. Li, Y. Li, J. Liu, Y. Wang, RSC Adv. 5, 21 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the University of Science and Technology Development Fund Planning Project of Tianjin (2017KJ072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Ma or Jingli Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Xu, J., Fan, Q. et al. Simple synthesis of hierarchical porous carbon with developed graphene domains for high performance supercapacitors. J Porous Mater 27, 515–524 (2020). https://doi.org/10.1007/s10934-019-00833-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00833-8

Keywords

Navigation