Skip to main content
Log in

Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

A Correction to this article was published on 21 December 2019

This article has been updated

Abstract

Pineoblastoma is a rare embryonal tumor of childhood that is conventionally treated with high-dose craniospinal irradiation (CSI). Multi-dimensional molecular evaluation of pineoblastoma and associated intertumoral heterogeneity is lacking. Herein, we report outcomes and molecular features of children with pineoblastoma from two multi-center, risk-adapted trials (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. The clinical cohort consisted of 58 patients with histologically diagnosed pineoblastoma (SJMB03 = 30, SJYC07 = 12, non-protocol = 16, including 12 managed with SJMB03-like therapy). The SJMB03 protocol comprised risk-adapted CSI (average-risk = 23.4 Gy, high-risk = 36 Gy) with radiation boost to the primary site and adjuvant chemotherapy. The SJYC07 protocol consisted of induction chemotherapy, consolidation with focal radiation (intermediate-risk) or chemotherapy (high-risk), and metronomic maintenance therapy. The molecular cohort comprised 43 pineal parenchymal tumors profiled by DNA methylation array (n = 43), whole-exome sequencing (n = 26), and RNA-sequencing (n = 16). Respective 5-year progression-free survival rates for patients with average-risk or high-risk disease on SJMB03 or SJMB03-like therapy were 100% and 56.5 ± 10.3% (P = 0.007); respective 2-year progression-free survival rates for those with intermediate-risk or high-risk disease on SJYC07 were 14.3 ± 13.2% and 0% (P = 0.375). Of patients with average-risk disease treated with SJMB03/SJMB03-like therapy, 17/18 survived without progression. DNA-methylation analysis revealed four clinically relevant pineoblastoma subgroups: PB-A, PB-B, PB-B–like, and PB-FOXR2. Pineoblastoma subgroups differed in age at diagnosis, propensity for metastasis, cytogenetics, and clinical outcomes. Alterations in the miRNA-processing pathway genes DICER1, DROSHA, and DGCR8 were recurrent and mutually exclusive in PB-B and PB-B–like subgroups; PB-FOXR2 samples universally overexpressed the FOXR2 proto-oncogene. Our findings suggest superior outcome amongst older children with average-risk pineoblastoma treated with reduced-dose CSI. The identification of biologically and clinically distinct pineoblastoma subgroups warrants consideration of future molecularly-driven treatment protocols for this rare pediatric brain tumor entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 21 December 2019

    The original version of this article unfortunately contained a typesetting error in Fig 3c. The corrected Fig. 3 is given in the following page.

References

  1. AbdelBaki M, Abu Arja M, Funk Z, Stanek J, Davidson T, Fangusaro J et al (2018) PDCT-13 Pineoblastoma in children: the head start experience. Neuro Oncol 20:vi203–vi203. https://doi.org/10.1093/neuonc/noy148.842

    Article  PubMed Central  Google Scholar 

  2. Capper D, Jones DT, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Sig Transduct Target Ther 3:5. https://doi.org/10.1038/s41392-018-0008-7

    Article  CAS  Google Scholar 

  4. Chintagumpala M, Hassall T, Palmer S, Ashley D, Wallace D, Kasow K et al (2009) A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro Oncol 11:33–40. https://doi.org/10.1215/15228517-2008-079

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cho Y-J, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29:1424–1430. https://doi.org/10.1200/JCO.2010.28.5148

    Article  PubMed  Google Scholar 

  6. ClinicalTrials.gov (2019) Treatment of patients with newly diagnosed medulloblastoma, supratentorial primitive neuroectodermal tumor, or atypical teratoid rhabdoid tumor. https://clinicaltrials.gov/ct2/show/NCT00085202. Accessed June 10 2019

  7. de Kock L, Sabbaghian N, Druker H, Weber E, Hamel N, Miller S et al (2014) Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol 128:583–595. https://doi.org/10.1007/s00401-014-1318-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng X, Yang Z, Zhang X, Lin D, Xu X, Lu X et al (2018) Prognosis of pediatric patients with pineoblastoma: a SEER analysis 1990–2013. World Neurosurg 118:e871–e879

    Article  PubMed  Google Scholar 

  9. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE et al (2005) beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s cancer study group brain tumour committee. J Clin Oncol 23:7951–7957. https://doi.org/10.1200/jco.2005.01.5479

    Article  CAS  PubMed  Google Scholar 

  10. Friedrich C, von Bueren AO, von Hoff K, Gerber NU, Ottensmeier H, Deinlein F et al (2012) Treatment of young children with CNS-primitive neuroectodermal tumors/pineoblastomas in the prospective multicenter trial HIT 2000 using different chemotherapy regimens and radiotherapy. Neuro Oncol 15:224–234. https://doi.org/10.1093/neuonc/nos292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilheeney SW, Saad A, Chi S, Turner C, Ullrich NJ, Goumnerova L et al (2008) Outcome of pediatric pineoblastoma after surgery, radiation and chemotherapy. J Neurooncol 89:89–95. https://doi.org/10.1007/s11060-008-9589-2

    Article  PubMed  Google Scholar 

  12. Gururangan S, McLaughlin C, Quinn J, Rich J, Reardon D, Halperin EC et al (2003) High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol 21:2187–2191. https://doi.org/10.1200/jco.2003.10.096

    Article  CAS  PubMed  Google Scholar 

  13. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027. https://doi.org/10.1101/gad.1262504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S et al (2018) Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the children’s oncology group randomized ACNS0332 trial. J Clin Oncol 36:3388–3395. https://doi.org/10.1200/jco.2017.76.4720

    Article  CAS  Google Scholar 

  15. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V et al (2016) Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29:379–393. https://doi.org/10.1016/j.ccell.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  16. Kivela T (1999) Trilateral retinoblastoma: a meta-analysis of hereditary retinoblastoma associated with primary ectopic intracranial retinoblastoma. J Clin Oncol 17:1829–1837. https://doi.org/10.1200/jco.1999.17.6.1829

    Article  CAS  PubMed  Google Scholar 

  17. Koso H, Tsuhako A, Lyons E, Ward JM, Rust AG, Adams DJ et al (2014) Identification of FoxR2 as an oncogene in medulloblastoma. Cancer Res 74:2351–2361. https://doi.org/10.1158/0008-5472.Can-13-1523

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Wang W, Xi Y, Gao M, Tran M, Aziz KE et al (2016) FOXR2 interacts with MYC to promote its transcriptional activities and tumorigenesis. Cell Rep 16:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333. https://doi.org/10.1038/nrc3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820

    Article  Google Scholar 

  21. Mays JC, Kelly MC, Coon SL, Holtzclaw L, Rath MF, Kelley MW (2018) Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression. PLoS One 13:e0205883. https://doi.org/10.1371/journal.pone.0205883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P et al (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23:5511–5519

    Article  PubMed  Google Scholar 

  23. Mynarek M, Pizer B, Dufour C, van Vuurden D, Garami M, Massimino M et al (2017) Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma: analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US Head Start data. Neuro Oncol 19:576–585. https://doi.org/10.1093/neuonc/now234

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen L, Crawford JR (2018) Pineoblastoma in a child with 22q11.2 deletion syndrome. BMJ Case Rep. https://doi.org/10.1136/bcr-2018-226434

    Article  PubMed  PubMed Central  Google Scholar 

  25. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414. https://doi.org/10.1200/JCO.2009.27.4324

    Article  PubMed  Google Scholar 

  26. Pizer BL, Weston CL, Robinson KJ, Ellison DW, Ironside J, Saran F et al (2006) Analysis of patients with supratentorial primitive neuro-ectodermal tumours entered into the SIOP/UKCCSG PNET 3 study. Eur J Cancer 42:1120–1128. https://doi.org/10.1016/j.ejca.2006.01.039

    Article  PubMed  Google Scholar 

  27. Poh B, Koso H, Momota H, Komori T, Suzuki Y, Yoshida N et al (2019) Foxr2 promotes formation of CNS-embryonal tumors in a Trp53-deficient background. Neuro Oncol. https://doi.org/10.1093/neuonc/noz067

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reddy AT, Janss AJ, Phillips PC, Weiss HL, Packer RJ (2000) Outcome for children with supratentorial primitive neuroectodermal tumors treated with surgery, radiation, and chemotherapy. Cancer 88:2189–2193. https://doi.org/10.1002/(sici)1097-0142(20000501)88:9%3c2189:aid-cncr27%3e3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  29. Robinson GW, Rudneva VA, Buchhalter I, Billups CA, Waszak SM, Smith KS et al (2018) Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol 19:768–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sabbaghian N, Hamel N, Srivastava A, Albrecht S, Priest JR, Foulkes WD (2012) Germline DICER1 mutation and associated loss of heterozygosity in a pineoblastoma. J Med Genet 49:417–419

    Article  CAS  PubMed  Google Scholar 

  31. Schild SE, Scheithauer BW, Schomberg PJ, Hook CC, Kelly PJ, Frick L et al (1993) Pineal parenchymal tumors: clinical, pathologic, and therapeutic aspects. Cancer 72:870–880

    Article  CAS  PubMed  Google Scholar 

  32. Schultz KAP, Williams GM, Kamihara J, Stewart DR, Harris AK, Bauer AJ et al (2018) DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res 24:2251–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma T, Schwalbe EC, Williamson D, Sill M, Hovestadt V, Mynarek M (2019) Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. https://doi.org/10.1007/s00401-019-02020-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Snuderl M, Kannan K, Pfaff E, Wang S, Stafford JM, Serrano J et al (2018) Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 9:2868. https://doi.org/10.1038/s41467-018-05029-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spence T, Sin-Chan P, Picard D, Barszczyk M, Hoss K, Lu M et al (2014) CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol (Berl) 128:291–303

    Article  CAS  Google Scholar 

  36. Stevens T, ten Bosch JVDW, De Rademaeker M, Van Den Bogaert A, van den Akker M (2017) Risk of malignancy in 22q11. 2 deletion syndrome. Clinical Case Rep 5:486

    Article  Google Scholar 

  37. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072. https://doi.org/10.1016/j.cell.2016.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC et al (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931. https://doi.org/10.1200/jco.2005.04.4974

    Article  CAS  PubMed  Google Scholar 

  39. Torchia J, Golbourn B, Feng S, Ho KC, Sin-Chan P, Vasiljevic A et al (2016) Integrated (epi)-genomic analyses identify subgroup-specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell 30:891–908. https://doi.org/10.1016/j.ccell.2016.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V et al (2003) Coleman CN CTCAE v3. 0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 3:176–181

    Article  Google Scholar 

  41. Upadhyaya SA, Robinson GW, Onar-Thomas A, Orr BA, Billups CA, Bowers DC et al (2019) Molecular grouping and outcomes of young children with newly diagnosed ependymoma treated on the multi-institutional SJYC07 trial. Neuro Oncol 21:1319–1330

    Article  PubMed  PubMed Central  Google Scholar 

  42. Uro-Coste E, Masliah-Planchon J, Siegfried A, Blanluet M, Lambo S, Kool M et al (2019) ETMR-like infantile cerebellar embryonal tumors in the extended morphologic spectrum of DICER1-related tumors. Acta Neuropathol 137:175–177. https://doi.org/10.1007/s00401-018-1935-7

    Article  PubMed  Google Scholar 

  43. van Rijn S, Vouri M, Pfister SM, Kawauchi D, Kool M (2018) EMBR-04. what the fox say? A molecular analysis of FOXR2 in pediatric brain tumors. Neuro Oncol 20:i69–i69. https://doi.org/10.1093/neuonc/noy059.189

    Article  PubMed Central  Google Scholar 

  44. Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM et al (2015) Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27:286–297. https://doi.org/10.1016/j.ccell.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH et al (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43:487–497. https://doi.org/10.1016/j.neuron.2004.08.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and families, physicians, and nursing, research, and administrative staff from all participating institutions. We appreciate the following core facilities at St Jude Children’s Research Hospital: the Biorepository, for providing and processing study tissues; the Diagnostic Biomarkers Shared Resource, for nucleic acid extractions; the Hartwell Center, for conducting DNA-methylation profiling and next-generation sequencing. We thank Brandon Stelter for assistance with figure preparation and artwork and Cherise Guess, PhD, ELS, for editing the manuscript.

Funding

This work was sponsored by the American Lebanese Syrian Associated Charities, the National Cancer Institute (Grant No. CA21765), and Musicians Against Childhood Cancer. P.A.N. is a Pew-Stewart Scholar for Cancer Research (Margaret and Alexander Stewart Trust) and recipient of The Sontag Foundation Distinguished Scientist Award. P.A.N. was also supported by the National Cancer Institute (Grant no. R01CA232143-01), American Association for Cancer Research (NextGen Grant for Transformative Cancer Research), The Brain Tumour Charity (Quest for Cures), the American Lebanese Syrian Associated Charities (ALSAC), and St. Jude.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Anthony P.Y. Liu, Arzu Onar-Thomas, David Ellison, Frederick A. Boop, Thomas E. Merchant, Giles W. Robinson, Paul A. Northcott, Amar Gajjar. Provision of study material or patients: Brent A. Orr, Paul Klimo Jr., Eric Bouffet, Sridharan Gururangan, John R. Crawford, Stewart J. Kellie, Murali Chintagumpala, Michael Fisher, Daniel C. Bowers, Tim Hassall, David Ellison, Frederick A. Boop, Thomas E. Merchant, Giles W. Robinson, Paul A. Northcott, and Amar Gajjar. Collection and assembly of data: All authors. Data analysis and interpretation: Anthony P.Y. Liu, Brian Gudenas, Tong Lin, Brent A. Orr, Arzu Onar-Thomas, Giles W. Robinson, Paul A. Northcott, and Amar Gajjar. Manuscript writing: All authors. Final approval of manuscript: All authors. Accountable for all aspects of the work: All authors.

Corresponding author

Correspondence to Anthony P. Y. Liu.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Typesetting error in Fig. 3c.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 Schematic summary of treatment approach from (a) SJMB03 and (b) SJYC07 (PDF 27350 kb)

401_2019_2106_MOESM2_ESM.pdf

Supplementary Fig. S2 Survival analysis of patients from the clinical pineoblastoma study according to study protocol and clinical characteristics. Progression-free survival (PFS) and overall-survival (OS) for (a) patients treated on SJMB03 and SJMB03-like non-protocol therapy; (b) patients on SJYC07 with or without radiation (RT), patients on SJMB03/SJMB03-like or SJYC07 therapy according to (c-d) metastatic status; (e-f) extent of resection (gross-total resection [GTR] vs. subtotal resection [STR] or biopsy [Bx]). (g) PFS and OS for patients on SJMB03/SJMB03-like therapy according to presence/absence of bulky residual disease. (h) OS by risk group for patients on SJMB03/SJMB03-like therapy and SJYC07 (PDF 27309 kb)

401_2019_2106_MOESM3_ESM.pdf

Supplementary Fig. S3 Methylation profiling reveals heterogeneity among samples from the study’s molecular cohort (n=43). Sample names are highlighted according to their respective pineoblastoma (PB) subgroups. (a) Heatmap and dendrogram from hierarchical clustering using the top 10,000 most variable probes. (b) Genome-wide chromosome copy-number alterations for each sample. PB-A, pineoblastoma group A; PB-B, pineoblastoma group B; PB-B–like, pineoblastoma group B–like; PB-FOXR2, pineoblastoma FOXR2-overexpressed (PDF 30394 kb)

401_2019_2106_MOESM4_ESM.pdf

Supplementary Fig. S4 t-stochastic neighbor embedding (t-SNE) analysis of samples from the study’s molecular cohort (n=43, open circles) with 2,801 published reference samples from 91 methylation classes by Capper et al. [14] Relevant reference classes were selected for a focused representation in Fig. 2a (PDF 27463 kb)

401_2019_2106_MOESM5_ESM.pdf

Supplementary Fig. S5 Hierarchical clustering of transcriptomic profiles (PB-B=4, PB-B–like=3, PB-FOXR2=4) using the top 200 most variably expressed genes revealed results supporting subgrouping by DNA-methylation profiling. Mut, mutated; PB-B, pineoblastoma group B; PB-B–like, pineoblastoma group B–like; PB-FOXR2, pineoblastoma FOXR2-overexpressed; WT, wild-type (PDF 27302 kb)

401_2019_2106_MOESM6_ESM.pdf

Supplementary Fig. S6 ClueGO plots showing enriched pathways in molecularly defined pineoblastoma subgroups. The top 20 terms are shown for PB-B (PDF 27339 kb)

401_2019_2106_MOESM7_ESM.pdf

Supplementary Fig. S7 Clinical, radiographic, and molecular features of two embryonal tumor with multilayered rosette (ETMR)-like samples harboring nonsense and missense DICER1 mutations (SJPB15 [histologically pineoblastoma] and SJPB16 [pineal anlage tumor]) (Fig. 2a). (a) In both cases, MRI showed a pineal region mass, and copy number plots showed the absence of chromosome 19 miRNA cluster (C19MC) amplification. (b) t-stochastic neighbor embedding (t-SNE) analysis with methylation profiles derived from 10 in-house typical ETMRs and two recently published “ETMR-like infantile cerebellar embryonal tumors” (which also lacked C19MC amplification and carried the same pattern of DICER1 mutations) showed clustering of our samples with the latter [42]. CSI, craniospinal irradiation; DOD, died of disease; Dx, diagnosis; M0, non-metastatic; PD, progressive disease; TSNE, t-stochastic neighbor embedding; WES, whole-exome sequencing (PDF 28994 kb)

401_2019_2106_MOESM8_ESM.pdf

Supplementary Fig. S8 Clinical, radiographic, and molecular features of two samples from the molecular cohort (SJPB17, clustering with WNT-activated medulloblastoma [MB-WNT], and SJPB19, clustering close to control pineal tissue; Fig. 2a) carrying a missense mutation in exon 3 of CTNNB1. In both cases, MRI showed a pineal region mass without posterior fossa involvement, and copy number plots showed the absence of monosomy 6. CTNNB1 mutations detected are highlighted in lollipop plots. CDDP, cisplatin; CPM, cyclophosphamide; CSI, craniospinal irradiation; Dx, diagnosis; IT, intrathecal; M0, non-metastatic; MB-G3, medulloblastoma group 3; MNP, MolecularNeuropathology classifier; t-SNE, t-stochastic neighbor embedding; VCR, vincristine; VP16, etoposide; WES, whole-exome sequencing (PDF 29498 kb)

401_2019_2106_MOESM9_ESM.pdf

Supplementary Methods: Supplementary methods and references on genome-wide DNA methylation profiling and next-generation sequencing pipelines (PDF 41 kb)

401_2019_2106_MOESM10_ESM.pdf

Supplementary Table S1 Clinical characteristics, treatment, outcome, and molecular features of patients with non-pineoblastoma histologies (PDF 33 kb)

Supplementary Table S2 Progression-free survival (PFS) and overall survival (OS) of study patients (PDF 37 kb)

Supplementary Table S3 Metadata for the study cohort (XLSX 15 kb)

Supplementary Table S4 Filtered list of variants called from whole-exome sequencing (XLSX 34 kb)

401_2019_2106_MOESM14_ESM.xlsx

Supplementary Table S5 Differential expression and gene set enrichment analysis in molecular pineoblastoma subgroups (XLSX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A.P.Y., Gudenas, B., Lin, T. et al. Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathol 139, 259–271 (2020). https://doi.org/10.1007/s00401-019-02106-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-02106-9

Keywords

Navigation