Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Porous films from cyclic block copolymers

Abstract

Porous films are attractive materials used in numerous fields, such as catalysis, templating, and separation. In previous examples of porous films prepared from block polymers, the pore size was usually determined by various factors, including mutual interaction between polymer chains, and was hard to precisely manipulate by modification of the block polymers. Herein, we report a novel method of preparing porous films from cyclic block copolymers with the pore size determined by the size of individual components. The incompatibility of the dangling polystyrene arms and cyclic polysiloxane backbones drove the assembly, which then led to the vertical alignment of the cyclic polysiloxane backbone to form porous films. Coarse-grained molecular dynamics simulations were also implemented to gain insight into the assembly process and the film microstructure at the molecular scale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernards DA, Desai TA. Nanoscale porosity in polymer films: fabrication and therapeutic applications. Soft Matter. 2010;6:1621–31.

    Article  CAS  Google Scholar 

  2. Hillmyer MA. Nanoporous materials from block copolymer precursors, In: Abetz V, editor. Block Copolymers II. 2005. p. 137–81 (Springer: Berlin, Heidelberg).

  3. Amsden JJ, Domachuk P, Gopinath A, White RD, Negro LD, Kaplan DL, Omenetto FG. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv Mater. 2010;22:1746–9.

    Article  CAS  Google Scholar 

  4. Li HW, Huck WTS. Ordered block-copolymer assembly using nanoimprint lithography. Nano Lett. 2004;4:1633–6.

    Article  CAS  Google Scholar 

  5. Ryu JH, Park S, Kim B, Klaikherd A, Russell TP, Thayumanavan S. Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. J Am Chem Soc. 2009;131:9870–1.

    Article  CAS  Google Scholar 

  6. Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA. Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J Am Chem Soc. 2002;124:12761–73.

    Article  CAS  Google Scholar 

  7. Kang M, Moon B. Synthesis of photocleavable poly(styrene-block-ethylene oxide) and its self-assembly into nanoporous thin films. Macromolecules. 2009;42:455–8.

    Article  CAS  Google Scholar 

  8. Park C, La Y, An TH, Jeong HY, Kang S, Joo SH, Ahn H, Shin TJ, Kim KT. Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers. Nat Commun. 2015;6:6392.

    Article  Google Scholar 

  9. Jenekhe SA, Chen XL. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science. 1999;283:372–5.

    Article  CAS  Google Scholar 

  10. Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev. 2015;115:9801–68.

    Article  CAS  Google Scholar 

  11. Widawski G, Rawiso M, François B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature. 1994;369:387–9.

    Article  CAS  Google Scholar 

  12. Josse T, De Winter J, Gerbaux P, Coulembier O. Cyclic polymers by ring-closure strategies. Angew Chem Int Ed Engl. 2016;55:13944–58.

    Article  CAS  Google Scholar 

  13. Jia Z, Monteiro MJ. Cyclic polymers: methods and strategies. J Polym Sci Part A. 2012;50:2085–97.

    Article  CAS  Google Scholar 

  14. Yamamoto T, Tezuka Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym Chem. 2011;2:1930–41.

    Article  CAS  Google Scholar 

  15. Schappacher M, Deffieux A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science. 2008;319:1512–5.

    Article  CAS  Google Scholar 

  16. Yu J, Liu Y. Cyclic polysiloxanes with linked cyclotetrasiloxane subunits. Angew Chem Int Ed Engl. 2017;56:8706–10.

    Article  CAS  Google Scholar 

  17. Wu CY, Yu JY, Li QS, Liu YZ. High molecular weight cyclic polysiloxanes from organocatalytic zwitterionic polymerization of constrained spirocyclosiloxanes. Polym Chem. 2017;8:7301–6.

    Article  CAS  Google Scholar 

  18. Luo YD, Montarnal D, Kirn S, Shi WC, Barteau KP, Pester CW, Hustad PD, Christianson MD, Fredrickson GH, Kramer EJ, Hawker CJ. Poly(dimethylsiloxane-b-methyl methacrylate): a promising candidate for sub-10 nm patterning. Macromolecules. 2015;48:3422–30.

    Article  CAS  Google Scholar 

  19. Rubinsztajn S, Cella JA. A new polycondensation process for the preparation of polysiloxane copolymers. Macromolecules. 2005;38:1061–3.

    Article  CAS  Google Scholar 

  20. Ribelli TG, Fantin M, Daran JC, Augustine KF, Poli R, Matyjaszewski K. Synthesis and characterization of the most active copper ATRP catalyst based on tris[(4-dimethylaminopyridyl)methyl]amine. J Am Chem Soc. 2018;140:1525–34.

    Article  CAS  Google Scholar 

  21. Wang WP, Fei M, Jie XX, Wang P, Cao HM, Yu JA. Synthesis and characterization of star-shaped block copolymers with polyhedral oligomeric silsesquioxane (POSS)core via ATRP. Polym Bull. 2010;65:863–72.

    Article  CAS  Google Scholar 

  22. Huang HY, Hu ZJ, Chen YZ, Zhang FJ, Gong YM, He TB, Wu C. Effects of casting solvents on the formation of inverted phase inblock copolymer thin films. Macromolecules. 2004;37:6523–30.

    Article  CAS  Google Scholar 

  23. Sabzi F, Boushehri A. Sorption phenomena of organic solvents in polymers: Part II. Eur Polym J. 2005;41:2067–87.

    Article  CAS  Google Scholar 

  24. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    Article  CAS  Google Scholar 

  25. Cusola O, Kivisto S, Vierros S, Batys P, Ago M, Tardy BL, Greca LG, Roncero MB, Sammalkorpi M, Rojas OJ. Particulate coatings via evaporation-induced self-assembly of polydisperse colloidal lignin on solid interfaces. Langmuir. 2018;34:5759–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

YZL is grateful for financial support from Youth 1000 Talent Fund KZ37029501, and the 111 Project (B14009). YJ is grateful for financial support from the National Natural Science Foundation of China (21622401, 21574006). HPL is grateful for funding support from the China Postdoctoral Science Foundation (2018M641141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Jiang or Yuzhou Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, H., Yu, J. et al. Porous films from cyclic block copolymers. Polym J 52, 449–455 (2020). https://doi.org/10.1038/s41428-019-0291-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0291-3

This article is cited by

Search

Quick links