Skip to main content
Log in

The association of π–π stacking and hydrogen bonding interactions in substituted Rebek imide with 2,6-di(isobutyramido)pyridine rings: theoretical insight into X-Rebek imide||pyr complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A host–guest model designed between two hemispheres as Rebek imide receptor and different ligands via triple hydrogen bonding and π−π stacking interactions was surveyed to investigate the substituent effects. The association of Rebek imide with 2,6-di(isobutyramido)pyridine (X-Rebek imide||pyr) in the presence of electron donating/withdrawing substituents was studied (X = (NCH3)2, OCH3, CH3, OH, H, F, Cl, Br and CN, CF3 and NO2, where || and ∙∙∙ denote π–π stacking and hydrogen bonding). It was explained the variation in binding energies, energy decomposition, geometries, NMR properties, and electron density of mentioned complexes and effect of different types of the substituents in studied complexes was identified via computational chemistry at M05-2X/6-311++G** level of theory on π–π stacking and hydrogen bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wheeler SE (2011) Local nature of substituent effects in stacking interactions. J Am Chem Soc 133:10262–10274

    PubMed  CAS  Google Scholar 

  2. Hwang J, Li P, Smith MD, Shimizu KD (2016) Distance-dependent attractive and repulsive interactions of bulky alkyl groups. Angew Chem Int Ed 55:8086–8089

    CAS  Google Scholar 

  3. Sinnokrot MO, Sherrill CD (2004) Substituent effects in π−π interactions: sandwich and T-shaped configurations. J Am Chem Soc 126:7690–7697

    PubMed  CAS  Google Scholar 

  4. Parrish RM, Sherrill CD (2014) Quantum-mechanical evaluation of π–π versus substituent−π interactions in π stacking: direct evidence for the Wheeler–Houk picture. J Am Chem Soc 136:17386–17389

    PubMed  CAS  Google Scholar 

  5. Seo J-I, Kim I, Lee YS (2009) π–π Interaction energies in monosubstituted-benzene dimers in parallel- and antiparallel-displaced conformations. Chem Phys Lett 474:101–106

    CAS  Google Scholar 

  6. Rozas I, Alkorta I, Elguero J (2004) Modeling Protein−RNA Interactions: an electron-density study of the formamide and formic acid complexes with RNA bases. J Phys Chem B 108:3335–3341

    CAS  Google Scholar 

  7. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Eng 42:1210–1250

    CAS  Google Scholar 

  8. Marsili S, Chelli R, Schettino V, Procacci P (2008) Thermodynamics of stacking interactions in proteins. Phys Chem Chem Phys 10:2673–2685

    PubMed  CAS  Google Scholar 

  9. Olsen J, Seiler P, Wagner B, Fischer H, Tschopp T, Obst-Sander U, Banner DW, Kansy M, Meller K, Diederich F (2004) A fluorine scan of the phenylamidinium needle of tricyclic thrombin inhibitors: effects of fluorine substitution on pKa and binding affinity and evidence for intermolecular C–F⋯CN interactions. Org Biomol Chem 2:1339–1352

    PubMed  CAS  Google Scholar 

  10. Morgenthaler M, Aebi JD, Groninger F, Mona D, Wagner B, Kansy M, Diederich F (2008) A fluorine scan of non-peptidic inhibitors of neprilysin: fluorophobic and fluorophilic regions in an enzyme active site. J Fluor Chem 129:852–865

    CAS  Google Scholar 

  11. Gung BW, Emenike BU, Alverez CN, Rakovan J, Kirschbaum K, Jain N (2010) Relative substituent position on the strength of π–π stacking interactions. Tetrahedron Lett 51:1648–1650

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Cozzi F, Siegel JS (1995) Interaction between stacked aryl groups in 1,8-diarylnaphthalenes: dominance of polar/π over charge-transfer effects. Pure Appl Chem 67:683–689

    CAS  Google Scholar 

  13. Wheeler SE, Bloom JWG (2014) Toward a more complete understanding of noncovalent interactions involving aromatic rings. J Phys Chem A 118:6133–6147

    PubMed  CAS  Google Scholar 

  14. Kollman PA (1977) In: Schaefer III HF (ed) Applications of electronic structure theory, vol 4. Plenum, New York

    Google Scholar 

  15. Alkorta I, Rozas I, Elguero J (1998) Non-conventional hydrogen bonds. Chem Soc Rev 27:163–170

    CAS  Google Scholar 

  16. Solimannejad M, Ghafari S (2013) Ab initio study of ternary radical–molecule complexes between HCN(HNC) and HO(HS) species. Struct Chem 24:1493–1498

    CAS  Google Scholar 

  17. Rutledge LR, Wetmore SD (2011) Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines. J Am Chem Soc 133:16258–16269

    PubMed  CAS  Google Scholar 

  18. Biot C, Wintjens R, Rooman M (2004) Stair motifs at protein−DNA interfaces: nonadditivity of H-bond, stacking, and cation−π interactions. J Am Chem Soc 126:6220–6221

    PubMed  CAS  Google Scholar 

  19. Ji B, Wang W, Deng D, Zhang Y (2011) Symmetrical bifurcated halogen bond: design and synthesis. Cryst Growth Des 11:3622–3628

    CAS  Google Scholar 

  20. Robertazzi A, Platts JA (2006) Gas-phase DNA oligonucleotide structures. A QM/MM and Atoms in Molecules Study. J Phys Chem A 110:3992–4000

    PubMed  CAS  Google Scholar 

  21. Quiñonero D, Frontera A, Escudero D, Ballester P, Costa A, Dey PM (2008) MP2 Study of synergistic effects between X–H/π (X = C,N,O) and π–π interactions. Theor Chem Accounts 120:385–393

    Google Scholar 

  22. Gholipour A, Saydi H, Neiband MS, Neyband RS (2012) Simultaneous interactions of pyridine with substituted benzene ring and H–F in X-ben⊥pyr···H–F complexes: a cooperative study. Struct Chem 23:367–373

    CAS  Google Scholar 

  23. Saha S, Sastry GN (2015) Cooperative or anticooperative: how noncovalent interactions influence each other. J Phys Chem B 119:11121–11135

    PubMed  CAS  Google Scholar 

  24. Wolfe J, Nemeth D, Costero A, Rebek J (1988) Convergent functional groups: catalysis of hemiacetal cleavage in a synthetic molecular cleft. J Am Chem Soc 110:983–984

    CAS  Google Scholar 

  25. Voss F, Vogt F, Herdtweck E, Bach T (2011) Synthesis of catalytically active ruthenium complexes with a remote chiral lactam as hydrogen-bonding motif. Synthesis 6:961–971

    Google Scholar 

  26. Wintner EA, Conn MM, Rebek J (1994) Self-replicating molecules: a second generation. J Am Chem Soc 116:8877–8884

    CAS  Google Scholar 

  27. Tjivikua T, Ballester P, Rebek J (1990) Self-replicating system. J Am Chem Soc 112:1249–1250

    CAS  Google Scholar 

  28. Rebek J, Askew B, Ballester P, Buhr C, Jones S, Nemeth D, Williams K (1987) Molecular recognition: hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. J Am Chem Soc 109:5033–5035

    CAS  Google Scholar 

  29. Rebek J (1990) Molecular recognition and biophysical organic chemistry. Acc Chem Res 23:399–404

    CAS  Google Scholar 

  30. Faraoni R, Blanzat M, Kubicek S, Braun C, Bernd Schweizer W, Gramlich V, Diederich F (2004) New Rebek imide-type receptors for adenine featuring acetylene-linked π-stacking platforms. Org Biomol Chem 2:1962–1964

    PubMed  CAS  Google Scholar 

  31. Faraoni R, Castellano RK, Gramlichc V, Diederich F (2004) H-Bonded complexes of adenine with Rebek imide receptors are stabilised by cation–π interactions and destabilised by stacking with perfluoroaromatics. Chem Commun 4:370–371

    Google Scholar 

  32. Riwar L, Trapp N, Kuhn B, Diederich F (2017) Substituent effects in parallel-displaced π-π stacking interactions: distance matters. Angew Chem Int Ed 56:11252–11257

    CAS  Google Scholar 

  33. Dumele O, Trapp N, Diederich F (2015) Halogen bonding molecular capsules. Angew Chem Int Ed 54:12339–12344

    CAS  Google Scholar 

  34. Harder M, Carnero Corrales MA, Trapp N, Kuhn B, Diederich F (2015) Rebek imide platforms as model systems for the investigation of weak intermolecular interactions. Chem Eur J 21:8455–8463

    PubMed  CAS  Google Scholar 

  35. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    CAS  Google Scholar 

  36. Riwar LJ, Trapp N, Kuhn B, Diederich F (2017) Substituent effects in parallel-displaced stacking interactions: distance matters. Angew Chem Int Ed 56:11252–11257

    CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) Gaussian 03, Revision C.02. GAUSSIAN, Inc, Wallingford CT

    Google Scholar 

  38. Boys SB, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  39. BieglerKonig FW, Schonbohm J, Bayles D (2001) Software News and Updates AIM2000- a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Google Scholar 

  40. Schmidt MW, Baldridge KK, Boat JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  41. Zhu W, Tan X, Shen J, Luo X, Cheng F, Mok PC, Ji R, Chen K, Jiang H (2003) Differentiation of cation−π bonding from cation−π intermolecular interactions: a quantum chemistry study using density-functional theory and Morokuma decomposition methods. J Phys Chem A 107:2296–2303

    CAS  Google Scholar 

  42. Ebrahimi A, Habibi M, Neyband RS, Gholipour AR (2009) Cooperativity of pi-stacking and hydrogen bonding interactions and substituent effects on X-ben//pyr...H-F complexes. Phys Chem Chem Phys 11:11424–11431

    PubMed  CAS  Google Scholar 

  43. Ghafari NikooJooneghani S, Gholipour A (2019) Mutual cooperation of π-π stacking and pnicogen bond interactions of substituted monomeric Lawesson’s reagent and pyridine rings: Theoretical insight into Pyr||X-PhPS2⊥pyr complexes. Chem Phys Lett 721:91–98

    CAS  Google Scholar 

  44. Ghafari S, Gholipour A (2015) Simultaneous interactions of pyrimidine ring with BeF2 and BF3 in BeF2 center dot center dot center dot X-Pyr center dot center dot center dot BF3 complexes: non-cooperativity. J Mol Model 21:1–7

    CAS  Google Scholar 

  45. Rozas I, Alkorta I, Elguero J (2000) Behavior of Ylides Containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziyeh Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvizi Moghadam, S., Mohammadi, M. & Behjatmanesh-Ardakani, R. The association of π–π stacking and hydrogen bonding interactions in substituted Rebek imide with 2,6-di(isobutyramido)pyridine rings: theoretical insight into X-Rebek imide||pyr complexes. Struct Chem 31, 747–754 (2020). https://doi.org/10.1007/s11224-019-01450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01450-6

Keywords

Navigation