Skip to main content
Log in

Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silica aerogel was often reinforced with glass fiber and changed to hydrophobicity via a surface modification to overcome its fragile and hygroscopic nature for practical application. However, though the mechanical and hydrophobic performances of the silica aerogel were improved, its unique ultra-low thermal conductivity was compromised. In order to prepare the hydrophobic silica aerogel felt while maintaining its excellent mechanical and insulation performances, the tetraethoxysilane and methyltrimethoxysilane (MTMS) as co-precursors, glass fiber as felt, and silica gel as a filling agent were selected to make the felt. An approach of the two-step sol–gel process followed by supercritical CO2 drying was applied. The morphology, structure, and properties of the felt were analyzed by field emission scanning electron microscope, a Fourier transform infrared spectrometer, and a thermal constants analyzer, etc. It was found that the felt showed excellent mechanical, thermally insulating, and hydrophobic performance. Also, it maintained low density and had higher thermal stability, due to the addition of silica gel and MTMS in the felt. The former enhanced the combination of silica aerogel with glass fiber and improved the microstructure of the felt. The latter endowed the felt excellent hydrophobicity, flexibility, and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Shi, L. Wang, J. Liu, Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60, 3718–3722 (2006)

    Article  CAS  Google Scholar 

  2. P.C. Thapliyal, K. Singh, Aerogels as promising thermal insulating materials: an overview. J. Mater. (2014). https://doi.org/10.1155/2014/127049

    Article  Google Scholar 

  3. X. Li, Q. Wang, H. Li, H. Ji, X. Sun, J. He, Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J. Sol-Gel. Sci. Technol. 67, 646–653 (2013)

    Article  CAS  Google Scholar 

  4. D. Shi, Y. Sun, J. Feng, X. Yang, S. Han, C. Mi, Y. Jiang, H. Qi, Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel. Mater. Sci. Eng. A 585, 25–31 (2013)

    Article  CAS  Google Scholar 

  5. X. Yang, Y. Sun, D. Shi, J. Liu, Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite. Mater. Sci. Eng. A 528, 4830–4836 (2011)

    Article  CAS  Google Scholar 

  6. B. Yuan, S. Ding, D. Wang, G. Wang, H. Li, Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater. Lett. 75, 204–206 (2012)

    Article  CAS  Google Scholar 

  7. Y. Liao, H. Wu, Y. Ding, S. Yin, M. Wang, A. Cao, Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J. Sol-Gel. Sci. Technol. 63, 445–456 (2012)

    Article  CAS  Google Scholar 

  8. C.-Y. Kim, J.-K. Lee, B.-I. Kim, Synthesis and pore analysis of aerogel–glass fiber composites by ambient drying method. Colloids Surf. A 313, 179–182 (2008)

    Article  CAS  Google Scholar 

  9. X. Gui, A. Cao, J. Wei, H. Li, Y. Jia, Z. Li, L. Fan, K. Wang, H. Zhu, D. Wu, Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4, 2320–2326 (2010)

    Article  CAS  Google Scholar 

  10. G. Wu, Y. Yu, X. Cheng, Y. Zhang, Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater. Chem. Phys. 129, 308–314 (2011)

    Article  CAS  Google Scholar 

  11. Y. Duan, S.C. Jana, B. Lama, M.P. Espe, Hydrophobic silica aerogels by silylation. J. Non-Cryst. Solids 437, 26–33 (2016)

    Article  CAS  Google Scholar 

  12. M. Li, H. Jiang, D. Xu, O. Hai, W. Zheng, Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. J. Non-Cryst. Solids 452, 187–193 (2016)

    Article  CAS  Google Scholar 

  13. Z. Li, X. Cheng, L. Gong, Q. Liu, S. Li, Enhanced flame retardancy of hydrophobic silica aerogels by using sodium silicate as precursor and phosphoric acid as catalyst. J. Non-Cryst. Solids 481, 267–275 (2018)

    Article  CAS  Google Scholar 

  14. U. Pyell, G. Stork, Preparation and properties of an 8-hydroxyquinoline silica gel, synthesized via mannich reaction. Fresenius’ J. Anal. Chem. 342, 281–286 (1992)

    Article  CAS  Google Scholar 

  15. S. Shafi, R. Navik, X. Ding, Y. Zhao, Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J. Non-Cryst. Solids 503, 78–83 (2019)

    Article  CAS  Google Scholar 

  16. M. Cai, S. Shafi, Y. Zhao, Preparation of compressible silica aerogel reinforced by bacterial cellulose using tetraethylorthosilicate and methyltrimethoxylsilane co-precursor. J. Non-Cryst. Solids 481, 622–626 (2018)

    Article  CAS  Google Scholar 

  17. Z. Li, X. Cheng, S. He, D. Huang, H. Bi, H. Yang, Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration. Mater. Lett. 129, 12–15 (2014)

    Article  CAS  Google Scholar 

  18. Z. Li, X. Cheng, S. He, X. Shi, L. Gong, H. Zhang, Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. A 84, 316–325 (2016)

    Article  CAS  Google Scholar 

  19. A.V. Rao, D. Haranath, Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous Mesoporous Mater. 30, 267–273 (1999)

    Article  CAS  Google Scholar 

  20. T. Zhou, X. Cheng, Y. Pan, C. Li, L. Gong, H. Zhang, Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl. Surf. Sci. 437, 321–328 (2018)

    Article  CAS  Google Scholar 

  21. X. Wang, N.G. Akhmedov, Y. Duan, D. Luebke, B. Li, Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. J. Mater. Chem. A 1, 2978–2982 (2013)

    Article  CAS  Google Scholar 

  22. Y. Si, T. Ren, B. Ding, J. Yu, G. Sun, Synthesis of mesoporous magnetic Fe3O4@ carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. J. Mater. Chem. 22, 4619–4622 (2012)

    Article  CAS  Google Scholar 

  23. K.H. Kim, Y. Oh, M.F. Islam, Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels. Adv. Func. Mater. 23, 377–383 (2013)

    Article  CAS  Google Scholar 

  24. A.V. Rao, M.M. Kulkarni, D. Amalnerkar, T. Seth, Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl. Surf. Sci. 206, 262–270 (2003)

    Article  CAS  Google Scholar 

  25. S.A. Mahadik, F. Pedraza, V. Parale, H.-H. Park, Organically modified silica aerogel with different functional silylating agents and effect on their physico-chemical properties. J. Non-Cryst. Solids 453, 164–171 (2016)

    Article  CAS  Google Scholar 

  26. S. Zong, W. Wei, Z. Jiang, Z. Yan, J. Zhu, J. Xie, Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification. RSC Adv. 5, 55579–55587 (2015)

    Article  CAS  Google Scholar 

  27. D.Y. Nadargi, S.S. Latthe, H. Hirashima, A.V. Rao, Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous Mesoporous Mater. 117, 617–626 (2009)

    Article  CAS  Google Scholar 

  28. C. Li, X. Cheng, Z. Li, Y. Pan, Y. Huang, L. Gong, Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J. Non-Cryst. Solids 457, 52–59 (2017)

    Article  CAS  Google Scholar 

  29. S. Yun, H. Luo, Y. Gao, Ambient-pressure drying synthesis of large resorcinol–formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J. Mater. Chem. A 2, 14542–14549 (2014)

    Article  CAS  Google Scholar 

  30. A. Tadjarodi, M. Haghverdi, V. Mohammadi, Preparation and characterization of nano-porous silica aerogel from rice husk ash by drying at atmospheric pressure. Mater. Res. Bull. 47, 2584–2589 (2012)

    Article  CAS  Google Scholar 

  31. A.V. Rao, R.R. Kalesh, D. Amalnerkar, T. Seth, Synthesis and characterization of hydrophobic TMES/TEOS based silica aerogels. J. Porous Mater. 10, 23–29 (2003)

    Article  CAS  Google Scholar 

  32. C. Lei, Z. Hu, Y. Zhang, H. Yang, J. Li, S. Hu, Tailoring structural and physical properties of polymethylsilsesquioxane aerogels by adjusting NH3· H2O concentration. Microporous Mesoporous Mater. 258, 236–243 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Instrumental Analysis Center of School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University for SEM, TGA, and FTIR and DSA and also appreciate Materials Testing and Analysis Center, Shanghai Jiao Tong University for the Compression test analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, S., Zhao, Y. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation. J Porous Mater 27, 495–502 (2020). https://doi.org/10.1007/s10934-019-00834-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00834-7

Keywords

Navigation