Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires

Abstract

Assemblies of metal oxide nanowires in 3D stacks can enable the realization of nanodevices with tailored conductivity, porous structure and a high surface area. Current fabrication methods require complicated multistep procedures that involve the initial preparation of nanowires followed by manual assembly or transfer printing, and thus lack synthesis flexibility and controllability. Here we report a general synthetic orthogonal assembly approach to controllably construct 3D multilayer-crossed metal oxide nanowire arrays. Taking tungsten oxide semiconducting nanowires as an example, we show the spontaneous orthogonal packing of composite nanorods of poly(ethylene oxide)-block-polystyrene and silicotungstic acid; the following calcination gives rise to 3D cross-stacked nanowire arrays of Si-doped metastable ε-phase WO3. This nanowire stack framework was also tested as a gas detector for the selective sensing of acetone. By using other polyoxometallates, this fabrication method for woodpile-like 3D nanostructures can also be generalized to different doped metal oxide nanowires, which provides a way to manipulate their physical properties for various applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-assembly of PEO-b-PS and H4SiW12O40.
Fig. 2: Elemental and structural analysis of the MC-WO3-NWAs.
Fig. 3: Different 3D cross-stacked nanowire structures by using other POMs as inorganic precursors.
Fig. 4: Schematic illustration and theoretical simulation of the formation process of the MC-WO3-NWAs.
Fig. 5: DFT calculation and EXAFS analysis of MC-WO3-NWAs.
Fig. 6: Gas-sensing performances of the MC-WO3-NWAs.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mao, L. B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    CAS  Google Scholar 

  2. Ma, K. et al. Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles. Nature 558, 577–580 (2018).

    CAS  Google Scholar 

  3. Prochowicz, D., Kornowicz, A. & Lewiński, J. Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chem. Rev. 117, 13461–13501 (2017).

    CAS  Google Scholar 

  4. Tan, K. W. et al. Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 349, 54–58 (2015).

    CAS  Google Scholar 

  5. Liu, X. G. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

    CAS  Google Scholar 

  6. Wang, F. D., Dong, A. G. & Buhro, W. E. Solution–liquid–solid synthesis, properties, and applications of one-dimensional colloidal semiconductor nanorods and nanowires. Chem. Rev. 116, 10888–10933 (2016).

    CAS  Google Scholar 

  7. Dasgupta, N. P. et al. Semiconductor nanowires—synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014).

    CAS  Google Scholar 

  8. Yang, P. D. Wires on water. Nature 425, 243–244 (2003).

    CAS  Google Scholar 

  9. Smith, P. A., Nordquist, C. D., Jackson, T. N. & Mayer, T. S. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    CAS  Google Scholar 

  10. Chen, M. & Sun, L. Tuning the response of magnetic suspensions. Appl. Phys. Lett. 82, 3310–3312 (2003).

    CAS  Google Scholar 

  11. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    CAS  Google Scholar 

  12. Law, W., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005).

    CAS  Google Scholar 

  13. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–168 (2008).

    CAS  Google Scholar 

  14. Kim, H. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature. Nano Lett. 17, 3465–3470 (2017).

    Google Scholar 

  15. Forster, S. & Dipl-Chem, T. P. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. 41, 688–714 (2002).

    CAS  Google Scholar 

  16. Yang, J. K. W. et al. Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nat. Nanotechnol. 5, 256–260 (2010).

    CAS  Google Scholar 

  17. Doerk, G. S. et al. Enabling complex nanoscale pattern customization using directed self-assembly. Nat. Commun. 5, 5805 (2014).

    Google Scholar 

  18. Bates, C. M. et al. Polarity-switching top coats enable orientation of sub-10-nm block copolymer domains. Science 338, 775–779 (2012).

    CAS  Google Scholar 

  19. Amir Tavakkoli, K. G. et al. Multilayer block copolymer meshes by orthogonal self-assembly. Nat. Commun. 7, 10518 (2016).

    Google Scholar 

  20. Wei, W. et al. Synthesis of molybdenum disulfide nanowire arrays using a block copolymer template. Chem. Mater. 28, 4017–4023 (2016).

    CAS  Google Scholar 

  21. Jeong, J. W. et al. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater. 28, 8695–8704 (2016).

    CAS  Google Scholar 

  22. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 ångstrom pores. Science 279, 548–552 (1998).

    CAS  Google Scholar 

  23. Lee, J. et al. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 7, 222–228 (2008).

    CAS  Google Scholar 

  24. Thompson, R. B., Ginzburg, V. V., Matsen, M. W. & Balazs, A. C. Predicting the mesophases of copolymer–nanoparticle composites. Science 292, 2469–2472 (2001).

    CAS  Google Scholar 

  25. Zhao, Y. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 8, 979–985 (2009).

    CAS  Google Scholar 

  26. Robbins, S. W. et al. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors. Sci. Adv. 2, 1501119 (2016).

    Google Scholar 

  27. Ferain, I., Colinge, C. A. & Colinge, J. P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2001).

    Google Scholar 

  28. Hochbaum, A. I. & Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2010).

    CAS  Google Scholar 

  29. Hahm, J. & Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004).

    CAS  Google Scholar 

  30. Lunkenbein, T. et al. Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. J. Am. Chem. Soc. 134, 12685–12692 (2012).

    CAS  Google Scholar 

  31. Lunkenbein, T. et al. Access to ordered porous molybdenum oxycarbide/carbon nanocomposites. Angew. Chem. Int. Ed. 51, 12892–12896 (2012).

    CAS  Google Scholar 

  32. Wu, Y. et al. Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc. 137, 4111–4118 (2015).

    CAS  Google Scholar 

  33. Liu, S. H. et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 6, 8817 (2015).

    CAS  Google Scholar 

  34. Wang, Z. M., Wang, W. D., Coombs, N., Soheilnia, N. & Ozin, G. A. Graphene oxide–periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano 4, 7437–7450 (2010).

    CAS  Google Scholar 

  35. Deng, Y. H. et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc. 129, 1690–1697 (2007).

    CAS  Google Scholar 

  36. Rydosz, A. et al. Performance of Si-doped WO3 thin films for acetone sensing prepared by glancing angle d.c. magnetron sputtering. IEEE Sens. J. 16, 1004–1012 (2016).

    CAS  Google Scholar 

  37. Wang, L., Teleki, A., Pratsinis, S. E. & Gouma, P. I. Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008).

    CAS  Google Scholar 

  38. Righettoni, M., Tricoli, A. & Pratsinis, S. E. Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152–3157 (2010).

    CAS  Google Scholar 

  39. Righettoni, M., Tricoli, A. & Pratsinis, S. E. Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010).

    CAS  Google Scholar 

  40. Li, Y. H. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed. 53, 9035–9040 (2014).

    CAS  Google Scholar 

  41. Wang, C. et al. A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. Angew. Chem. Int. Ed. 52, 11603–11606 (2013).

    CAS  Google Scholar 

  42. Luo, W. et al. A Resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. Angew. Chem. Int. Ed. 52, 10505–10510 (2013).

    CAS  Google Scholar 

  43. Wang, Y. C. et al. Structural distortion and electronic states of Rb doped WO3 by X-ray absorption spectroscopy. RSC Adv. 6, 107871–107877 (2016).

    CAS  Google Scholar 

  44. Comini, E., Cristalli, A., Faglia, G. & Sberveglieri, G. Light enhanced gas sensing properties of indium oxide and tin oxide sensors. Sens. Actuators B 65, 260–263 (2000).

    CAS  Google Scholar 

  45. Zhang, H., Qin, H. W., Gao, C. Y. & Hu, J. F. An ultrahigh sensitivity acetone sensor enhanced by light illumination. Sensors 18, 2318 (2018).

    Google Scholar 

  46. Li, M. et al. Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures. Nat. Commun. 8, 14564 (2017).

    CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  51. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  53. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Google Scholar 

  54. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  55. Webb, S. M. SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115, 1011–1014 (2005).

    CAS  Google Scholar 

  56. Newville, M. J. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8, 324–332 (2001).

    Google Scholar 

  57. Rehr, J. J., Albers, R. C. & Zabinsky, S. I. High-order multiple-scattering calculations of X-ray-absorption fine structure. Phys. Rev. Lett. 69, 3397–3400 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos 51422202, 21673048 and 21875044), Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (17JC1400100) and Youth Top-notch Talent Support Program of China. The authors thank G. Zhou and Z. Shan for assistance in TEM characterization.

Author information

Authors and Affiliations

Authors

Contributions

Y.R., Y.Z. and Y.D. conceived the project and designed the experiments. Y.R., Y.Z., X.Z., J.M., D.Z., G.W. and Y.D. were primarily responsible for the data collection and analysis. Y.L. and Y.A. analysed the structures with DFT calculations. S.X. and Y.Z. analysed the EXAFS data. Y.R., Y.Z. and Y.D. prepared the figures and wrote the main manuscript text. All the authors contributed to the discussions and manuscript preparation.

Corresponding author

Correspondence to Yonghui Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Notes 1–7 and Tables 1–6.

Supplementary Video 1

In situ TEM observation was conducted to study the real time structure transformation of the as-casted PEO-b-PS/H4SiW hybrid film into 3D crossed multilayer Si-doped WO3 nanowires by heating the hybrid film under TEM and in situ recording images of the sample.

Supplementary Video 2

The animation about the formation mechanism of 3D crossed multilayer Si-doped WO3 nanowires by the solvent evaporation induced co-assembly of PEO-b-PS copolymers and H4SiW, followed with structure transformation induced by thermal treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zou, Y., Liu, Y. et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 19, 203–211 (2020). https://doi.org/10.1038/s41563-019-0542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0542-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing