Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria

Abstract

Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. The relatively slow porin-mediated passive uptake across the outer membrane and active efflux via efflux pumps in the inner membrane creates a permeability barrier. The synergistic action of outer membrane permeability, efflux pump activities and enzymatic degradation efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this Review, we discuss recent advances in our understanding of the molecular and functional roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural aspects of enterobacterial porins.
Fig. 2: Structural differences in enterobacterial porins have implications for permeation and antibiotic resistance.
Fig. 3: Mechanism of translocation and model of permeation of molecules through general porins.

Similar content being viewed by others

References

  1. Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zgurskaya, H. I., Löpez, C. A. & Gnanakaran, S. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 1, 512–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hancock, R. E. W. The bacterial outer membrane as a drug barrier. Trends Microbiol. 5, 37–42 (1997).

    CAS  PubMed  Google Scholar 

  4. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pagès, J.-M., James, C. E. & Winterhalter, M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6, 893–903 (2008).

    PubMed  Google Scholar 

  6. Masi, M., Réfrégiers, M., Pos, K. M. & Pagès, J.-M. Mechanisms of envelope permeability and antibiotic influx and efflux in gram-negative bacteria. Nat. Microbiol. 2, 17001 (2017).

    CAS  PubMed  Google Scholar 

  7. Yan, J. J., Wang, M. C., Zheng, P. X., Tsai, L. H. & Wu, J. J. Associations of the major international high-risk resistant clones and virulent clones with specific ompK36 allele groups in Klebsiella pneumoniae in Taiwan. New Microbes New Infect. 5, 1–4 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Galdiero, S. et al. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr. Protein Pept. Sci. 13, 843–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, Y.-F. et al. Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect. Immun. 80, 1815–1822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salerno-Gonçalves, R. et al. Use of a novel antigen expressing system to study the Salmonella enterica serovar Typhi protein recognition by T cells. PLOS Negl. Trop. Dis. 11, e0005912 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Pérez-Toledo, M. et al. Salmonella Typhi porins OmpC and OmpF are potent adjuvants for T-dependent and T-independent antigens. Front. Immunol. 8, 230 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. El-Khatib, M. et al. Porin self-association enables cell-to-cell contact in Providencia stuartii floating communities. Proc. Natl Acad. Sci. USA 115, E2220–E2228 (2018).

    CAS  PubMed  Google Scholar 

  13. Cramer, W. A., Sharma, O. & Zakharov, S. D. On mechanisms of colicin import: the outer membrane quandary. Biochem. J. 475, 3903–3915 (2018).

    CAS  PubMed  Google Scholar 

  14. Walsh, C. Antibiotics: Actions, Origins, Resistance (American Society of Microbiology, 2003).

  15. Bryskier, A. (ed.) Antimicrobial Agents: Antibacterials and Antifungals (American Society of Microbiology, 2005).

  16. Dam, S., Pagès, J.-M. & Masi, M. Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae. Microbiology 164, 260–267 (2018).

    CAS  PubMed  Google Scholar 

  17. Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 62, e01076–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiss, M. S. & Schulz, G. E. Structure of porin refined at 1.8 Å resolution. J. Mol. Biol. 227, 493–509 (1992).

    CAS  PubMed  Google Scholar 

  19. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727 (1992).

    CAS  PubMed  Google Scholar 

  20. Lou, K.-L. et al. Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis. J. Biol. Chem. 271, 20669–20675 (1996).

    CAS  PubMed  Google Scholar 

  21. Phale, P. S. et al. Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. Biochemistry 40, 6319–6325 (2001).

    CAS  PubMed  Google Scholar 

  22. Baslé, A., Rummel, G., Storici, P., Rosenbusch, J. P. & Schirmer, T. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362, 933–942 (2006).

    PubMed  Google Scholar 

  23. Dutzler, R. et al. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure 7, 425–434 (1999).

    CAS  PubMed  Google Scholar 

  24. Balasubramaniam, D., Arockiasamy, A., Kumar, P. D., Sharma, A. & Krishnaswamy, S. Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi. J. Struct. Biol. 178, 233–244 (2012).

    CAS  PubMed  Google Scholar 

  25. Acosta-Gutiérrez, S. et al. Getting drugs into Gram-negative bacteria: Rational rules for permeation through general porins. ACS Infect. Dis. 4, 1487–1498 (2018).

    PubMed  Google Scholar 

  26. Arunmanee, W. et al. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proc. Natl Acad. Sci. USA 113, E5034–E5043 (2016).

    CAS  PubMed  Google Scholar 

  27. Malinverni, J. C. & Silhavy, T. J. An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proc. Natl Acad. Sci. USA 106, 8009–8014 (2009).

    CAS  PubMed  Google Scholar 

  28. Abellón-Ruiz, J. et al. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat. Microbiol. 2, 1616 (2017).

    PubMed  Google Scholar 

  29. Schulz, G. E. Structure-function relationships in the membrane channel porin as based on a 1.8 Å resolution crystal structure. in Membrane Proteins: Structures, Interactions and Models (eds Pullman, A., Jortner, J. & Pullman, B.) 403–412 (Springer, 1992).

  30. Dhakshnamoorthy, B., Ziervogel, B. K., Blachowicz, L. & Roux, B. A structural study of ion permeation in OmpF porin from anomalous X-ray diffraction and molecular dynamics simulations. J. Am. Chem. Soc. 135, 16561–16568 (2013).

    CAS  PubMed  Google Scholar 

  31. Misra, R. & Benson, S. A. Isolation and characterization of OmpC porin mutants with altered pore properties. J. Bacteriol. 170, 528–533 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lou, H. et al. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. Coli. PLOS ONE 6, e25825 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kojima, S. & Nikaido, H. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl Acad. Sci USA 110, E2629–E2634 (2013).

    CAS  PubMed  Google Scholar 

  34. Nestorovich, E. M., Danelon, C., Winterhalter, M. & Bezrukov, S. M. Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl Acad. Sci. USA 99, 9789–9794 (2002).

    CAS  PubMed  Google Scholar 

  35. Ziervogel, B. K. & Roux, B. The binding of antibiotics in OmpF porin. Structure 21, 76–87 (2013).

    CAS  PubMed  Google Scholar 

  36. Dutzler, R., Wang, Y.-F., Rizkallah, P. J., Rosenbusch, J. P. & Schirmer, T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure 4, 127–134 (1996).

    CAS  PubMed  Google Scholar 

  37. Ye, J. & van den Berg, B. Crystal structure of the bacterial nucleoside transporter Tsx. EMBO J. 23, 3187–3195 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sugawara, E., Kojima, S. & Nikaido, H. Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-lactams than their Escherichia coli homologs OmpF and OmpC. J Bacteriol. 198, 3200–3208 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai, H., Rose, K., Liang, L.-H., Dunham, S. & Stover, C. Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa. Anal. Biochem. 385, 321–325 (2009).

    CAS  PubMed  Google Scholar 

  41. Schumacher, A. et al. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J. Antimicrob. Chemother. 59, 1261–1264 (2007).

    CAS  PubMed  Google Scholar 

  42. Davis, T. D., Gerry, ChristopherJ. & Tan, D. S. General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem. Biol. 9, 2535–2544 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, Y. et al. Thinking outside the “bug”: A unique assay to measure intracellular drug penetration in Gram-negative bacteria. Anal. Chem. 87, 3579–3584 (2015).

    CAS  PubMed  Google Scholar 

  44. Iyer, R. et al. Evaluating LC-MS/MS to measure accumulation of compounds within bacteria. ACS Infect. Dis. 4, 1336–1345 (2018).

    CAS  PubMed  Google Scholar 

  45. Six, D. A., Krucker, T. & Leeds, J. A. Advances and challenges in bacterial compound accumulation assays for drug discovery. Curr. Opin. Chem. Biol. 44, 9–15 (2018).

    CAS  PubMed  Google Scholar 

  46. Prochnow, H. et al. Subcellular quantification of uptake in Gram-negative bacteria. Anal. Chem. 91, 1863–1872 (2019).

    CAS  PubMed  Google Scholar 

  47. Vergalli, J. et al. Fluoroquinolone structure and translocation flux across bacterial membrane. Sci. Rep. 7, 9821 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Vergalli, J. et al. Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat. Protoc. 13, 1348–1361 (2018).

    CAS  PubMed  Google Scholar 

  49. Allam, A. et al. Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative bacteria. Sci. Rep. 7, 986 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Andersen, C., Jordy, M. & Benz, R. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise. J. Gen. Physiol. 105, 385–401 (1995).

    CAS  PubMed  Google Scholar 

  51. Kullman, L., Winterhalter, M. & Bezrukov, S. M. Transport of maltodextrins through maltoporin: a single-channel study. Biophys. J. 82, 803–812 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gutsmann, T., Heimburg, T., Keyser, U., Mahendran, K. R. & Winterhalter, M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat. Protoc. 10, 188–198 (2015).

    PubMed  Google Scholar 

  53. Mahendran, K. R., Kreir, M., Weingart, H., Fertig, N. & Winterhalter, M. Permeation of antibiotics through Escherichia coli OmpF and OmpC porins: screening for influx on a single-molecule level. J. Biomol. Screen. 15, 302–307 (2010).

    CAS  PubMed  Google Scholar 

  54. Mahendran, K. R. et al. Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli - When binding does not imply translocation. J. Phys. Chem. B 114, 5170–5179 (2010).

    CAS  PubMed  Google Scholar 

  55. Singh, P. R., Ceccarelli, M., Lovelle, M., Winterhalter, M. & Mahendran, K. R. Antibiotic permeation across the OmpF channel: modulation of the affinity site in the presence of magnesium. J. Phys. Chem. B 116, 4433–4438 (2012).

    PubMed  Google Scholar 

  56. Wang, J., Bafna, J. A., Bhamidimarri, S. P. & Winterhalter, M. Small-molecule permeation across membrane channels: chemical modification to quantify transport across OmpF. Angew. Chem. Int. Ed. 58, 4737–4741 (2019).

    Google Scholar 

  57. Ghai, I. et al. Ampicillin permeation across OmpF, the major outer-membrane channel in Escherichia coli. J. Biol. Chem. 293, 7030–7037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghai, I. et al. General method to determine the flux of charged molecules through nanopores applied to β-lactamase inhibitors and OmpF. J. Phys. Chem. Lett. 8, 1295–1301 (2017).

    CAS  PubMed  Google Scholar 

  59. Winterhalter, M. & Ceccarelli, M. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria. Eur. J. Pharm. Biopharm. 95, 63–67 (2015).

    CAS  PubMed  Google Scholar 

  60. Scorciapino, M. A. et al. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria. J. Phys. Condens. Matter 29, 113001 (2017).

    PubMed  Google Scholar 

  61. Tieleman, D. P. & Berendsen, H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys. J. 74, 2786–2801 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Im, W. & Roux, B. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322, 851–869 (2002).

    CAS  PubMed  Google Scholar 

  63. Aguilella-Arzo, M., García-Celma, J. J., Cervera, J., Alcaraz, A. & Aguilella, V. M. Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants. Bioelectrochemistry 70, 320–327 (2007).

    CAS  PubMed  Google Scholar 

  64. Biró, I., Pezeshki, S., Weingart, H., Winterhalter, M. & Kleinekathöfer, U. Comparing the temperature-dependent conductance of the two structurally similar E. coli porins OmpC and OmpF. Biophys. J. 98, 1830–1839 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Tran, Q.-T., Williams, S., Farid, R., Erdemli, G. & Pearlstein, R. The translocation kinetics of antibiotics through porin OmpC: insights from structure-based solvation mapping using WaterMap. Proteins 81, 291–299 (2013).

    CAS  PubMed  Google Scholar 

  66. Ceccarelli, M., Danelon, C., Laio, A. & Parrinello, M. Microscopic mechanism of antibiotics translocation through a porin. Biophys. J. 87, 58–64 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Masi, M., Pagès, J.-M. & Winterhalter, M. Outer membrane porins. in Bacterial Cell Walls and Membranes (ed. Kuhn, A.) 79–123 (Springer, 2019).

  68. Acosta-Gutierrez, S., Scorciapino, M. A., Bodrenko, I. & Ceccarelli, M. Filtering with electric field: the case of E. coli porins. J. Phys. Chem. Lett. 6, 1807–1812 (2015).

    CAS  PubMed  Google Scholar 

  69. Bajaj, H. et al. Molecular basis of filtering carbapenems by porins from β-lactam-resistant clinical strains of Escherichia coli. J. Biol. Chem. 291, 2837–2847 (2016).

    CAS  PubMed  Google Scholar 

  70. Acosta-Gutierrez, S., Bodrenko, I., Scorciapino, M. A. & Ceccarelli, M. Macroscopic electric field inside water-filled biological nanopores. Phys. Chem. Chem. Phys. 18, 8855–8864 (2016).

    PubMed  Google Scholar 

  71. Kojima, S. & Nikaido, H. High salt concentrations increase permeability through OmpC channels of Escherichia coli. J. Biol. Chem. 289, 26464–26473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. D’Agostino, T., Salis, S. & Ceccarelli, M. A kinetic model for molecular diffusion through pores. Biochim. Biophys. Acta 1858, 1772–1777 (2016).

    PubMed  Google Scholar 

  73. Bodrenko, I., Bajaj, H., Ruggerone, P., Winterhalter, M. & Ceccarelli, M. Analysis of fast channel blockage: revealing substrate binding in the microsecond range. Analyst 140, 4820–4827 (2015).

    CAS  PubMed  Google Scholar 

  74. Bodrenko, I. V., Wang, J., Salis, S., Winterhalter, M. & Ceccarelli, M. Sensing single molecule penetration into nanopores: pushing the time resolution to the diffusion limit. ACS Sens. 2, 1184–1190 (2017).

    CAS  PubMed  Google Scholar 

  75. Bajaj, H. et al. Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano 11, 5465–5473 (2017).

    CAS  PubMed  Google Scholar 

  76. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS  PubMed  Google Scholar 

  77. O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    PubMed  Google Scholar 

  78. Brown, D. G., May-Dracka, T. L., Gagnon, M. M. & Tommasi, R. Trends and exceptions of physical properties on antibacterial activity for gram-positive and gram-negative pathogens. J. Med. Chem. 57, 10144–10161 (2014).

    CAS  PubMed  Google Scholar 

  79. Page, M. G. P. Beta-lactam antibiotics. in Antibiotic Discovery and Development (eds Dougherty, T. J. & Pucci, M.) 79–117 (Springer, 2011).

  80. Bodrenko, I. V., Salis, S., Acosta-Gutierrez, S. & Ceccarelli, M. Diffusion of large particles through small pores: from entropic to enthalpic transport. J. Chem. Phys. 150, 211102–211106 (2019).

    PubMed  Google Scholar 

  81. Grabowicz, M. & Silhavy, T. J. Envelope stress responses: an interconnected safety net. Trends Biochem. Sci. 42, 232–242 (2017).

    CAS  PubMed  Google Scholar 

  82. Chen, H. D. & Groisman, E. A. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu. Rev. Microbiol. 67, 83–112 (2013).

    CAS  PubMed  Google Scholar 

  83. Guest, R. L. & Raivio, T. L. Role of the Gram-negative envelope stress response in the presence of antimicrobial agents. Trends Microbiol. 24, 377–390 (2016).

    CAS  PubMed  Google Scholar 

  84. Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 3752–3775 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Laloux, G. & Collet, J.-F. Major Tom to ground control: how lipoproteins communicate extracytoplasmic stress to the decision center of the cell. J. Bacteriol. 199, e00216–e00217 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tiwari, S. et al. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front. Microbiol. 8, 1878 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Fröhlich, K. S. & Gottesman, S. Small regulatory RNAs in the enterobacterial response to envelope damage and oxidative stress. Microbiol. Spectr. 6, RWR-0022-2018 (2018).

    Google Scholar 

  88. Barquist, L. & Vogel, J. Accelerating discovery and functional analysis of small RNAs with new technologies. Annu. Rev. Genet. 49, 367–394 (2015).

    CAS  PubMed  Google Scholar 

  89. Vogel, J. & Wagner, E. G. H. Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol. 10, 262–270 (2007).

    CAS  PubMed  Google Scholar 

  90. Guillier, M., Gottesman, S. & Storz, G. Modulating the outer membrane with small RNAs. Genes Dev. 20, 2338–2348 (2006).

    CAS  PubMed  Google Scholar 

  91. Vogel, J. & Papenfort, K. Small non-coding RNAs and the bacterial outer membrane. Curr. Opin. Microbiol. 9, 605–611 (2006).

    CAS  PubMed  Google Scholar 

  92. Valentin-Hansen, P., Johansen, J. & Rasmussen, A. A. Small RNAs controlling outer membrane porins. Curr. Opin. Microbiol. 10, 152–155 (2007).

    CAS  PubMed  Google Scholar 

  93. Delihas, N. & Forst, S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J. Mol. Biol. 313, 1–12 (2001).

    CAS  PubMed  Google Scholar 

  94. Andersen, J. & Delihas, N. micF RNA binds to the 5’ end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 29, 9249–9256 (1990).

    CAS  PubMed  Google Scholar 

  95. Delihas, N. Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: a historical perspective. World J. Biol. Chem. 6, 272–280 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Inouye, M. The first demonstration of RNA interference to inhibit mRNA function. Gene 592, 332–333 (2016).

    CAS  PubMed  Google Scholar 

  97. Chen, S., Zhang, A., Blyn, L. B. & Storz, G. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 186, 6689–6697 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dam, S., Pagès, J.-M. & Masi, M. Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli. Antibiotics 6, 33 (2017).

    PubMed Central  Google Scholar 

  99. Ramani, N., Hedeshian, M. & Freundlich, M. micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. J. Bacteriol. 176, 5005–5010 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chou, J. H., Greenberg, J. T. & Demple, B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175, 1026–1031 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Davin-Regli, A. et al. Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr. Drug Targets 9, 750–759 (2008).

    CAS  PubMed  Google Scholar 

  102. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  PubMed  Google Scholar 

  103. Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523 (2018).

    CAS  PubMed  Google Scholar 

  104. Dupont, H. et al. Structural alteration of OmpR as a source of ertapenem resistance in a CTX-M-15-producing Escherichia coli O25b:H4 sequence type 131 clinical isolate. Antimicrob. Agents Chemother. 61, e00014–e00017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dupont, H. et al. Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob. Agents Chemother. 60, 215–221 (2016).

    CAS  PubMed  Google Scholar 

  106. Tran, Q.-T. et al. Implication of porins in β-lactam resistance of Providencia stuartii. J. Biol. Chem. 285, 32273–32281 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tran, Q.-T. et al. Porin flexibility in Providencia stuartii: cell-surface-exposed loops L5 and L7 are markers of Providencia porin OmpPst1. Res. Microbiol. 168, 685–699 (2017).

    CAS  PubMed  Google Scholar 

  108. Oteo, J. et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int. J. Antimicrob. Agents 32, 534–537 (2008).

    CAS  PubMed  Google Scholar 

  109. Philippe, N. et al. In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PLOS ONE 10, e0138828 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Lázaro-Perona, F. et al. Genomic path to pandrug resistance in a clinical isolate of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 52, 713–718 (2018).

    PubMed  Google Scholar 

  111. Yang, F.-C., Yan, J.-J., Hung, K.-H. & Wu, J.-J. Characterization of ertapenem-resistant Enterobacter cloacae in a Taiwanese University Hospital. J. Clin. Microbiol. 50, 223–226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fernández, J., Guerra, B. & Rodicio, M. R. Resistance to carbapenems in non-typhoidal Salmonella enterica Serovars from humans, animals and food. Vet. Sci. 5, E40 (2018).

    PubMed  Google Scholar 

  113. Doumith, M., Ellington, M. J., Livermore, D. M. & Woodford, N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 63, 659–667 (2009).

    CAS  PubMed  Google Scholar 

  114. Wozniak, A. et al. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J. Med. Microbiol. 61, 1270–1279 (2012).

    CAS  PubMed  Google Scholar 

  115. Cerqueira, G. C. et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc. Natl Acad. Sci. USA 114, 1135–1140 (2017).

    CAS  PubMed  Google Scholar 

  116. Novais, Â. et al. Spread of an OmpK36-modified ST15 Klebsiella pneumoniae variant during an outbreak involving multiple carbapenem-resistant Enterobacteriaceae species and clones. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3057–3063 (2012).

    CAS  PubMed  Google Scholar 

  117. Shin, S. Y. et al. Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J. Med. Microbiol. 61, 239–245 (2012).

    CAS  PubMed  Google Scholar 

  118. Martínez-Martínez, L. Extended-spectrum beta-lactamases and the permeability barrier. Clin. Microbiol. Infect. 14, 82–89 (2008).

    PubMed  Google Scholar 

  119. Thiolas, A., Bollet, C., Scola, B. L., Raoult, D. & Pagès, J.-M. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob. Agents Chemother. 49, 1354–1358 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lavigne, J.-P. et al. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int. J. Antimicrob. Agents 41, 130–136 (2013).

    CAS  PubMed  Google Scholar 

  121. Lavigne, J.-P. et al. Membrane permeability, a pivotal function involved in antibiotic resistance and virulence in Enterobacter aerogenes clinical isolates. Clin. Microbiol. Infect. 18, 539–545 (2012).

    CAS  PubMed  Google Scholar 

  122. Hamzaoui, Z. et al. An outbreak of NDM-1-producing Klebsiella pneumoniae, associated with OmpK35 and OmpK36 porin loss in Tunisia. Microb. Drug Resist. 24, 1137–1147 (2018).

    CAS  PubMed  Google Scholar 

  123. Gröbner, S. et al. Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. J. Med. Microbiol. 58, 912–922 (2009).

    PubMed  Google Scholar 

  124. Findlay, J., Hamouda, A., Dancer, S. J. & Amyes, S. G. B. Rapid acquisition of decreased carbapenem susceptibility in a strain of Klebsiella pneumoniae arising during meropenem therapy. Clin. Microbiol. Infect. 18, 140–146 (2012).

    CAS  PubMed  Google Scholar 

  125. Nelson, K. et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob. Agents Chemother. 61, e00989–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shen, Z. et al. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 72, 1930–1936 (2017).

    CAS  PubMed  Google Scholar 

  127. Pagès, J.-M., Peslier, S., Keating, T. A., Lavigne, J.-P. & Nichols, W. W. Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob. Agents Chemother. 60, 1349–1359 (2016).

    PubMed Central  Google Scholar 

  128. Balabanian, G., Rose, M., Manning, N., Landman, D. & Quale, J. Effect of porins and bla KPC expression on activity of imipenem with relebactam in Klebsiella pneumoniae: Can antibiotic combinations overcome resistance? Microb. Drug Resist. 24, 877–881 (2018).

    CAS  PubMed  Google Scholar 

  129. Sun, D., Rubio-Aparicio, D., Nelson, K., Dudley, M. N. & Lomovskaya, O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 61, e01694-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. Lunha, K. et al. High-level carbapenem-resistant OXA-48-producing Klebsiella pneumoniae with a novel OmpK36 variant and low-level, carbapenem-resistant, non-porin-deficient, OXA-181-producing Escherichia coli from Thailand. Diagn. Microbiol. Infect. Dis. 85, 221–226 (2016).

    CAS  PubMed  Google Scholar 

  131. Dé, E. et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. 41, 189–198 (2001).

    PubMed  Google Scholar 

  132. Thiolas, A., Bornet, C., Davin-Régli, A., Pagès, J.-M. & Bollet, C. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 317, 851–856 (2004).

    CAS  PubMed  Google Scholar 

  133. García-Fernández, A. et al. An ertapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob. Agents Chemother. 54, 4178–4184 (2010).

    PubMed  PubMed Central  Google Scholar 

  134. Clancy, C. J. et al. Mutations of the ompK36 porin gene and promoter impact responses of sequence type 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. Antimicrob. Agents Chemother. 57, 5258–5265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Papagiannitsis, C. C. et al. OmpK35 and OmpK36 porin variants associated with specific sequence types of Klebsiella pneumoniae. J. Chemother. 25, 250–254 (2013).

    CAS  PubMed  Google Scholar 

  136. Hall, J. M., Corea, E., Sanjeewani, H. D. A. & Inglis, T. J. J. Molecular mechanisms of β-lactam resistance in carbapenemase-producing Klebsiella pneumoniae from Sri Lanka. J. Med. Microbiol. 63, 1087–1092 (2014).

    PubMed  Google Scholar 

  137. Partridge, S. R. et al. Emergence of bla KPC carbapenemase genes in Australia. Int. J. Antimicrob. Agents 45, 130–136 (2015).

    CAS  PubMed  Google Scholar 

  138. Knopp, M. & Andersson, D. I. Amelioration of the fitness costs of antibiotic resistance due to reduced outer membrane permeability by upregulation of alternative porins. Mol. Biol. Evol. 32, 3252–3263 (2015).

    CAS  PubMed  Google Scholar 

  139. García-Sureda, L., Juan, C., Doménech-Sánchez, A. & Albertí, S. Role of Klebsiella pneumoniae LamB porin in antimicrobial resistance. Antimicrob. Agents Chemother. 55, 1803–1805 (2011).

    PubMed  PubMed Central  Google Scholar 

  140. Bialek-Davenet, S. et al. In-vivo loss of carbapenem resistance by extensively drug-resistant Klebsiella pneumoniae during treatment via porin expression modification. Sci. Rep. 7, 6722 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Kaczmarek, F. M., Dib-Hajj, F., Shang, W. & Gootz, T. D. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla ACT-1 β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50, 3396–3406 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. García-Sureda, L. et al. OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55, 4742–4747 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Doménech-Sánchez, A., Hernández-Allés, S., Martínez-Martínez, L., Benedí, V. J. & Albertí, S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: Its role in β-lactam antibiotic resistance. J. Bacteriol. 181, 2726–2732 (1999).

    PubMed  PubMed Central  Google Scholar 

  144. Castanheira, M., Mendes, R. E. & Sader, H. S. Low frequency of ceftazidime-avibactam resistance among Enterobacteriaceae isolates carrying bla KPC collected in U.S. hospitals from 2012 to 2015. Antimicrob. Agents Chemother. 61, e02369-16 (2017).

    PubMed  Google Scholar 

  145. Noinaj, N., Gumbart, J. C. & Buchanan, S. K. The β-barrel assembly machinery in motion. Nat. Rev. Microbiol. 15, 197–204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Schiffrin, B., Brockwell, D. J. & Radford, S. E. Outer membrane protein folding from an energy landscape perspective. BMC Biol. 15, 123 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Robinson, J. A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in gram-negative bacteria. Front. Chem. 7, 45 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hao, M. et al. Porin deficiency in carbapenem-resistant Enterobacter aerogenes strains. Microb. Drug Resist. 24, 1277–1283 (2018).

    CAS  PubMed  Google Scholar 

  149. Jiménez-Castellanos, J.-C. et al. Envelope proteome changes driven by RamA overproduction in Klebsiella pneumoniae that enhance acquired β-lactam resistance. J. Antimicrob. Chemother. 73, 88–94 (2018).

    PubMed  Google Scholar 

  150. Chetri, S. et al. Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res. Notes 12, 138 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Bhamidimarri, S. P., Prajapati, J. D., van den Berg, B., Winterhalter, M. & Kleinekathöfer, U. Role of electroosmosis in the permeation of neutral molecules: CymA and cyclodextrin as an example. Biophys. J. 110, 600–611 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Olivares, J. et al. The intrinsic resistome of bacterial pathogens. Front. Microbiol. 4, 103 (2013).

    PubMed  PubMed Central  Google Scholar 

  153. Li, X.-Z., Plésiat, P. & Nikaido, H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. Xia, J., Gao, J. & Tang, W. Nosocomial infection and its molecular mechanisms of antibiotic resistance. Biosci. Trends 10, 14–21 (2016).

    CAS  PubMed  Google Scholar 

  155. Nikaido, H. & Pagès, J.-M. Broad specificity efflux pumps and their role in multidrug resistance of gram negative bacteria. FEMS Microbiol. Rev. 36, 340–363 (2012).

    CAS  PubMed  Google Scholar 

  156. Davin-Regli, A., Lavigne, J.-P. & Pagès, J.-M. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev. 32, e00002-e00019 (2019).

    PubMed  Google Scholar 

  157. Pagès, J.-M. et al. Efflux Pump, the masked side of ß-Lactam resistance in Klebsiella pneumoniae clinical isolates. PLOS ONE 4, e4817 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. Wan Nur Ismah, W. A. K., Takebayashi, Y., Findlay, J., Heesom, K. J. & Avison, M. B. Impact of OqxR loss of function on the envelope proteome of Klebsiella pneumoniae and susceptibility to antimicrobials. J. Antimicrob. Chemother. 73, 2990–2996 (2018).

    PubMed  Google Scholar 

  159. Nikaido, H. Role of permeability barriers in resistance to β-lactam antibiotics. Pharmacol. Ther. 27, 197–231 (1985).

    CAS  PubMed  Google Scholar 

  160. Talbot, G. H. β-Lactam antimicrobials: what have you done for me lately? Ann. N. Y. Acad. Sci. 1277, 76–83 (2013).

    CAS  PubMed  Google Scholar 

  161. Westfall, D. A. et al. Bifurcation kinetics of drug uptake by Gram-negative bacteria. PLOS ONE 12, e0184671 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Nicolas-Chanoine, M.-H., Mayer, N., Guyot, K., Dumont, E. & Pagès, J.-M. Interplay between membrane permeability and enzymatic barrier leads to antibiotic-dependent resistance in Klebsiella pneumoniae. Front. Microbiol. 9, 1422 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Castanheira, M. et al. Analyses of a ceftazidime-avibactam-resistant Citrobacter freundii isolate carrying bla KPC-2 reveals a heterogenous population and reversible genotype. mSphere 3, e00408-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  164. Fajardo-Lubián, A., Ben Zakour, N. L., Agyekum, A., Qi, Q. & Iredell, J. R. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLOS Pathog. 15, e1007218 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Coines, J., Acosta-Gutierrez, S., Bodrenko, I., Rovira, C. & Ceccarelli, M. Glucose transport via the pseudomonads porin OprB. Implications for the design of Trojan-horse antinfectives. Phys. Chem. Chem. Phys. 21, 8457–8463 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge R. A. Stavenger for stimulating and helpful discussions. The research leading to this article was conducted as part of the TRANSLOCATION consortium, and it has received support from the Innovative Medicines Initiatives Joint Undertaking under Grant Agreement no. 115525, resources that are composed of financial contributions from the European Union’s seventh framework programme (FP7/2007–2013) and the European Federation of Pharmaceutical Industries and Associations companies in kind contribution. J.M.P. was also partially supported by Aix-Marseille Université, Service de Santé des Armées and INSERM. M.C. was partially supported by the Italian MIUR, PRIN Project 2015795S5W_005. L.M. was also supported by the ND4BB ENABLE Consortium under grant agreement no. 115583. The authors apologize to those researchers whose articles are not cited owing to space limitations.

Reviewer information

Nature Reviews Microbiology thanks H. Zgurskaya, S. Bezrukov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article. J.-M.P., J.V., I.V.B., M.M., L.M., J.H.N., A.D.-R., M.C., B.v.d.B. and M.W. contributed substantially to the discussion of the content. J.-M.P., J.V., I.V.B., M.M., L.M., S.A.-G., J.H.N., M.C., B.v.d.B. and M.W. wrote the article. and J.-M.P., J.V., J.H.N., M.C., B.v.d.B. and M.W. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jean-Marie Pagès.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

TRANSLOCATION consortium: https://www.imi.europa.eu/projects-results/project-factsheets/translocation

Supplementary information

Glossary

β-barrels

β-barrels comprise an even number of β-strands, ranging from 8 to 24, that are arranged in an antiparallel fashion.

β-Lactamases

Bacterial enzymes located in the periplasm of Gram-negative bacteria that cleave β-lactam antibiotics such as penicillins, cephalosporins and carbapenems.

Counterion

Ion accompanying a charged amino acid to maintain charge neutrality. Whereas the amino acid is fixed, the counterion is solubilized in the aqueous phase and moves with the electric field.

Graphics processing units

Hardware components of a computer able to increase computational speed by performing parallel calculations. They are typically used for gaming, but their use has been extended to use by scientific software that runs much faster (a factor of 10–100) than on a normal central processing unit.

Dipole moment

Electric dipole moment applied to compounds or molecules. It provides information on the distribution of charges in the scaffold. A zwitterionic molecule possesses a large dipole when the two charged groups are far apart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergalli, J., Bodrenko, I.V., Masi, M. et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Microbiol 18, 164–176 (2020). https://doi.org/10.1038/s41579-019-0294-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0294-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology