Skip to main content
Log in

Effect of Cyclic Reaction on Corrosion Behavior of Chromium-Containing Alloys in CO2 Gas at 650 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this work, seven commercial alloys (602CA, 310SS, 253MA, F321, F316L, 800H and 304SS) were investigated in Ar–20% CO2 gas at 650 °C under a cyclic condition (1-h reaction and 0.25-h cooling in each cycle) for up to 310 cycles. The corrosion behavior of these alloys in isothermal reaction condition was also carried out for a purpose of comparison. The results showed that nickel-based 602CA alloy stayed protective in both isothermal and cyclic reaction conditions by forming a thin protective alumina scale. However, alloys F321, F316L, 800H and 304SS all formed thick multilayered oxides with external iron-rich oxides and internal spinel oxides in all reaction conditions. Alloys 310SS and 253MA behaved protective in isothermal reaction condition but formed pitting corrosion in cyclic reaction condition. The high corrosion resistance of 310SS and 253MA was attributed to the high Cr content and the effect of other alloying elements, e.g., Si and Mn, forming additional oxide layers to enhance chromia protection. Cyclic reaction created stress on oxide scale during cooling and heating which accelerated the initiation of breakaway corrosion of these alloys. Carburization due to CO2 reaction was identified for F321, F316L and 304SS, but not for other alloys because of the formation of highly protective alumina or chromia scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science.31, 283–307 (2005).

    Article  CAS  Google Scholar 

  2. F. Chatel-Pelage, O. Marin, N. Perrin et al, A pilot-scale demonstration of oxy-combustion with flue gas recirculation in a pulverized coal-fired boiler, in The 28th International Technical Conference on Coal Utilization & Fuel Systems, Florida (2003).

  3. D. Singh, E. Croiset, P. Douglas and M. A. Douglas, Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management44, 3073–3091 (2003).

    Article  CAS  Google Scholar 

  4. C. A. Powell and B. D. Morreale, Materials challenges in advanced coal conversion technologies. MRS Bulletin33, 309–315 (2008).

    Article  CAS  Google Scholar 

  5. R. Viswanathan and W. Bakker, Materials for Ultrasupercritical Coal Power Plants—Boiler Materials: Part 1. Journal of Materials Engineering and Performance10, 81–95 (2001).

    Article  CAS  Google Scholar 

  6. J. P. Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments. Materials at High Temperatures26, 63–72 (2009).

    Article  CAS  Google Scholar 

  7. J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. Quadakkers, The oxidation behaviour of the 9% Cr steel P92 in CO2-and H2O-rich gases relevant to oxyfuel environments. International Journal of Materials Research101, 287–299 (2010).

    Article  CAS  Google Scholar 

  8. D. Huenert and A. Kranzmann, Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic–martensitic and austenitic steels. Corrosion Science53, 2306–2317 (2011).

    Article  CAS  Google Scholar 

  9. Z. W. Zhao, Y. Z. Li, B. W. Li, S. Li and W. F. Wu, Analysis on high temperature oxidation of U71Mn steel under CO2. Advanced Materials Research496, 359–362 (2012).

    Article  CAS  Google Scholar 

  10. Y. Behnamian, A. Mostafaei, A. Kohandehghan, et al., A comparative study on the oxidation of austenitic alloys 304 and 304-oxide dispersion strengthened steel in supercritical water at 650 °C. The Journal of Supercritical Fluids.119, 245–260 (2017).

    Article  CAS  Google Scholar 

  11. M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 °C. Corrosion Science.48, 2014–2035 (2006).

    Article  CAS  Google Scholar 

  12. M. Sun, X. Wu, Z. Zhang and E.-H. Han, Oxidation of 316 stainless steel in supercritical water. Corrosion Science51, 1069–1072 (2009).

    Article  CAS  Google Scholar 

  13. M. Nezakat, H. Akhiani, S. Penttilä, S. M. Sabet and J. Szpunar, Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water. Corrosion Science94, 197–206 (2015).

    Article  CAS  Google Scholar 

  14. L. Tan, K. Sridharan and T. R. Allen, The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water. Journal of Nuclear Materials348, 263–271 (2006).

    Article  CAS  Google Scholar 

  15. J. E. Antill and J. B. Warburton, Behaviour of carbon during the corrosion of stainless steel by carbon dioxide. Corrosion Science7, 645–649 (1967).

    Article  CAS  Google Scholar 

  16. H. E. McCoy, Type 304 stainless steel vs. flowing CO2 at atmospheric pressure and 1100–1800 F. Corrosion21, 84–94 (1965).

    Article  CAS  Google Scholar 

  17. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson and T. R. Allen, Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corrosion Science60, 246–255 (2012).

    Article  CAS  Google Scholar 

  18. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  19. R. Viswanathan, J. Sarver and J. M. Tanzosh, Boiler materials for ultra-supercritical coal power plants: steamside oxidation. Journal of Materials Engineering and Performance15, 255–274 (2006).

    Article  CAS  Google Scholar 

  20. D. Monceau and D. Poquillon, Continuous thermogravimetry under cyclic conditions. Oxidation of Metals61, 143–163 (2004).

    Article  CAS  Google Scholar 

  21. A. Raffaitin, D. Monceau, E. Andrieu and F. Crabos, Cyclic oxidation of coated and uncoated single-crystal nickel-based superalloy MC2 analyzed by continuous thermogravimetry analysis. Acta Materialia54, 4473–4487 (2006).

    Article  CAS  Google Scholar 

  22. M. Schütze and W. J. Quaddakkers, Cyclic Oxidation of High Temperature Materials: (EFC 27), (Maney Publishing, Frankfurt/Main, 1999).

    Google Scholar 

  23. N. K. Othman, J. Zhang and D. J. Young, Temperature and water vapour effects on the cyclic oxidation behaviour of Fe–Cr alloys. Corrosion Science52, 2827–2836 (2010).

    Article  CAS  Google Scholar 

  24. N. K. Othman, J. Zhang and D. J. Young, Effect of water vapour on cyclic oxidation of Fe–Cr alloys. Materials and Corrosion62, 496–503 (2011).

    Article  CAS  Google Scholar 

  25. R. K. S. Raman, B. Gleeson and D. J. Young, Laser Raman spectroscopy: a technique for rapid characterisation of oxide scale layers. Materials Science and Technology14, 373–376 (1998).

    Article  CAS  Google Scholar 

  26. K. F. McCarty and D. R. Boehme, A Raman study of the systems Fe 3−xCrxO4 and Fe2−xCrxO3. Journal of Solid State Chemistry79, 19–27 (1989).

    Article  CAS  Google Scholar 

  27. C. Wagner, Reaktionstypen bei der Oxydation von Legierungen. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie63, 772–782 (1959).

    CAS  Google Scholar 

  28. R. A. Rapp, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys. Acta Metallurgica9, 730–741 (1961).

    Article  CAS  Google Scholar 

  29. J. H. Swisher and E. T. Turkdogan, Solubility, permeability, and diffusivity of oxygen in solid iron. Transactions of the Metallurgical Society of AIME239, 426–431 (1967).

    CAS  Google Scholar 

  30. J.-W. Park and C. J. Altstetter, The diffusion and solubility of oxygen in solid nickel. Metallurgical Transactions A18, 43–50 (1987).

    Article  Google Scholar 

  31. J. Takada, S. Yamamoto, S. Kikuchi and M. Adachi, Determination of diffusion coefficient of oxygen in γ-iron from measurements of internal oxidation in Fe-Al alloys. Metallurgical Transactions A17, 221–229 (1986).

    Article  Google Scholar 

  32. J. Askill, Tracer diffusion in the chromium–nickel system. Physica status solidi (a)8, 587–596 (1971).

    Article  CAS  Google Scholar 

  33. P. I. Williams and R. G. Faulkner, Chemical volume diffusion coefficients for stainless steel corrosion studies. Journal of Materials Science22, 3537–3542 (1987).

    Article  CAS  Google Scholar 

  34. H. S. Daruvala and K. R. Bube, Tracer diffusion of chromium in 304 stainless steel. Materials Science and Engineering41, 293–295 (1979).

    Article  CAS  Google Scholar 

  35. R. A. Perkins, R. A. Padgett and N. K. Tunali, Tracer diffusion of 59Fe and 51Cr in Fe-17 Wt Pet Cr-12 Wt Pet Ni austenitic alloy. Metallurgical Transactions4, 2535–2540 (1973).

    Article  CAS  Google Scholar 

  36. A. F. Smith and G. B. Gibbs, Volume and Grain-Boundary Diffusion in 20 Cr/25 Ni/Nb Stainless Steel. Metal Science Journal3, 93–94 (1969).

    Article  Google Scholar 

  37. Z. Tőkei, K. Hennesen, H. Viefhaus and H. J. Grabke, Diffusion of chromium in ferritic and austenitic 9–20 wt.%chromium steels. Materials Science and Technology16, 1129–1138 (2000).

    Article  Google Scholar 

  38. C. Wagner, Theoritical analysis of the diffusion processes determining the oxidation rate of alloys. Journal of the Electrochemical Society99, 369–380 (1952).

    Article  CAS  Google Scholar 

  39. T. D. Nguyen, J. Zhang and D. J. Young, Effects of silicon and water vapour on corrosion of Fe–20Cr and Fe–20Cr–20Ni alloys in CO2 at 650 °C. Oxidation of Metals87, 541–573 (2017).

    Article  CAS  Google Scholar 

  40. A. M. Huntz, V. Bague, G. Beauplé, et al., Effect of silicon on the oxidation resistance of 9% Cr steels. Applied Surface Science207, 255–275 (2003).

    Article  CAS  Google Scholar 

  41. T. D. Nguyen, J. Zhang and D. J. Young, Effects of silicon on high temperature corrosion of Fe–Cr and Fe–Cr–Ni alloys in carbon dioxide. Oxidation of Metals81, 549–574 (2014).

    Article  CAS  Google Scholar 

  42. W. Assassa and P. Guiraldenq, Bulk and grain boundary diffusion of 59Fe, 51Cr, and 63Ni in austenitic stainless steel under influence of silicon content. Metal Science12, 123–128 (1978).

    Article  CAS  Google Scholar 

  43. T. D. Nguyen, J. Zhang and D. J. Young, Effect of Mn on oxide formation by Fe–Cr and Fe–Cr–Ni alloys in dry and wet CO2 gases at 650 °C. Corrosion Science112, 110–127 (2016).

    Article  CAS  Google Scholar 

  44. W. Gust, M. B. Hintz, A. Loddwg, H. Odelius and B. Predel, Impurity diffusion of Al in Ni single crystals studied by secondary ion mass spectrometry (SIMS). Physica Status Solidi (a)64, 187–194 (1981).

    Article  CAS  Google Scholar 

  45. H. J. Grabke, Oxidation of NiAl and FeAl. Intermetallics7, 1153–1158 (1999).

    Article  CAS  Google Scholar 

  46. E. Airiskallio, E. Nurmi, M. H. Heinonen, et al., High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: the role of Cr as a chemically active element. Corrosion Science52, 3394–3404 (2010).

    Article  CAS  Google Scholar 

  47. I. A. Kvernes and P. Kofstad, The oxidation behavior of some Ni–Cr–Al alloys at high temperatures. Metallurgical Transactions3, 1511–1519 (1972).

    Article  CAS  Google Scholar 

  48. P. Hancock, R. C. Hurst, The mechanical properties and breakdown of surface oxide films at elevated temperatures, in Advances in Corrosion Science and Technology: Volume 4, eds. M. G. Fontana and R. W. Staehle, (Springer, Boston, 1974), pp. 1–84.

  49. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2016).

    Google Scholar 

  50. J. Robertson and M. I. Manning, Limits to adherence of oxide scales. Materials Science and Technology6, 81–92 (1990).

    Article  CAS  Google Scholar 

  51. R. C. Lobb, J. A. Sasse and H. E. Evans, Dependence of oxidation behaviour on silicon content of 20%Cr austenitic steels. Materials Science and Technology5, 828–834 (1989).

    Article  CAS  Google Scholar 

  52. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Carburisation of ferritic Fe–Cr alloys by low carbon activity gases. Corrosion Science53, 2767–2777 (2011).

    Article  CAS  Google Scholar 

  53. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Penetration of protective chromia scales by carbon. Scripta Materialia77, 29–32 (2014).

    Article  CAS  Google Scholar 

  54. M. Hänsel, C. A. Boddington and D. J. Young, Internal oxidation and carburisation of heat-resistant alloys. Corrosion Science45, 967–981 (2003).

    Article  Google Scholar 

  55. T. D. Nguyen, J. Zhang and D. J. Young, Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 and Ar–20CO2–20H2O gases at 650°C. Corrosion Science100, 448–465 (2015).

    Article  CAS  Google Scholar 

  56. I. E. McCarroll, A. La Fontaine, T. D. Nguyen, et al., Performance of an FeCrAl alloy in a high-temperature CO2 environment. Corrosion Science139, 267–274 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Australian Research Council for financial support of this project under the Discovery Project Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Kong, C. & Zhang, J. Effect of Cyclic Reaction on Corrosion Behavior of Chromium-Containing Alloys in CO2 Gas at 650 °C. Oxid Met 93, 131–157 (2020). https://doi.org/10.1007/s11085-019-09950-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09950-w

Keywords

Navigation