Skip to main content
Log in

Insights into the Phosphate Species on Niobia Treated with H3PO4

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Solid acid catalysts are largely used in several industrial processes, and the development of materials with high activity, selectivity and reusability is a subject of study of research groups around the world. The improvement of oxide acidity could be performed by phosphation with phosphoric acid but the investigation of phosphated niobia is still incipient. In this work, niobia was treated with phosphoric acid solutions to generate catalysts with higher esterification activity at mild condition. The phosphated catalysts were obtained and characterized by XRD, N2 adsorption, NH3 and pyridine chemisorption and FTIR, and were tested in the esterification of acetic acid with ethanol at 60 °C and RT. DFPT calculations indicated that H2PO4 group was the predominant phosphate species on the hydroxylated surface. Theoretical results also show that ethanol adsorbs preferentially at H2PO4 acidic sites on the phosphated catalyst as compared to acetic acid.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://www.vasp.at/

References

  1. Galadima A, Muraza A (2015) J Ind Eng Chem 31:1–14

    Article  CAS  Google Scholar 

  2. Coma A (1995) Chem Rev 95:559–614

    Article  Google Scholar 

  3. Schüth F (2001) Chem Mater 13:3184–3195

    Article  Google Scholar 

  4. Nakajima K, Fukui T, Kato H, Kitano M, Kondo JN, Hayashi S, Hara M (2010) Chem Mater 22:3332–3339

    Article  CAS  Google Scholar 

  5. Braga VS, Dias JA, Dias SCL, Macedo JL (2005) Chem Mater 17:690–695

    Article  CAS  Google Scholar 

  6. Gonçalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Catal Today 133–135:673–677

    Article  Google Scholar 

  7. Fernandes DR, Rocha AS, Mai EF, Mota CJA, da Silva VT (2012) Appl Catal A 425–426:199–204

    Article  Google Scholar 

  8. Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo JN, Ebitani K, Hayashi S, Tatsumi T (2010) Angew Chem Int Ed 49:1128–1132

    Article  CAS  Google Scholar 

  9. Tanabe K, Hölderich WF (1999) Appl Catal A 181:399–434

    Article  CAS  Google Scholar 

  10. Yang H, Zhao RJ, Yang X, Shen L, Wang Z (2003) Mater Chem Phys 80:68–72

    Article  CAS  Google Scholar 

  11. Arata K (1996) Appl Catal A 146:3–32

    Article  CAS  Google Scholar 

  12. Yadav GD, Yadav AR (2014) Chem Eng J 243:556–563

    Article  CAS  Google Scholar 

  13. Li Y, Zhang XD, Sun L, Xu M, Zhou WG, Liang XH (2010) Appl Energy 87:2369–2373

    Article  CAS  Google Scholar 

  14. Essamlali Y, Larzek M, Essaid B, Zahouily M (2017) Ind Eng Chem Res 56:5821–5832

    Article  CAS  Google Scholar 

  15. Rocha AS, Costa GC, Tamiasso-Martinhon P, Sousa C, Rocha AB (2017) Mater Chem Phys 186:138–145

    Article  CAS  Google Scholar 

  16. Pietre MK, Almeida LCP, Landers R, Vinhas RCG, Luna FJ (2010) Reac Kinet Mech Cat 99:269–280

    CAS  Google Scholar 

  17. El-Sharkawy EA, Al-Shihry SS (2010) Monatsh Chem 141(259):267

    Google Scholar 

  18. Alhassan FH, Rashid U, SadiqAl-Qubaisi M, Rasedee A, Taufiq-Yap YH (2014) Powder Technol 253:809–813

    Article  CAS  Google Scholar 

  19. Ropero-Vega JL, Aldana-Pérez A, Gómez R, Niño-Gómez ME (2010) Appl Catal A 379:24–29

    Article  CAS  Google Scholar 

  20. Santos ACB, Kover WB, Faro AC Jr (1997) Appl Catal A 153:83–101

    Article  Google Scholar 

  21. Rocha AS, Forrester AMS, Cruz MHC, Silva CT, Lachter ER (2008) Catal Comm 9:1959–1965

    Article  CAS  Google Scholar 

  22. Wang Y, Aghamohammadi S, Li D, Li K, Farrauto R (2019) Appl Catal B 244:438–447

    Article  CAS  Google Scholar 

  23. Oliveira JA, Reis MO, Pires MS, Ruotolo LAM, Ramalho TC, Oliveira CR, Lacerda LCT, Nogueira FGE (2019) Mater Chem Phys 228:160–167

    Article  CAS  Google Scholar 

  24. Pereira CCM, Lachter ER (2004) Appl Catal A 266:67–72

    Article  CAS  Google Scholar 

  25. Pereira CCM, Cruz MHC, Lachter ER (2010) J Braz Chem Soc 21:367–370

    Article  CAS  Google Scholar 

  26. Carniti P, Gervasini A, Biella S, Auroux A (2005) Chem Mater 17:6128–6136

    Article  CAS  Google Scholar 

  27. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) J Chem Phys 140:084106

    Article  Google Scholar 

  28. https://www.vasp.at/

  29. Kato VK, Tamura S (1975) Acta Cryst B31:673–677

    Article  CAS  Google Scholar 

  30. Cruz MHC, Rocha AS, Lachter ER, Forrester AMS, Reis MC, San Gil RAS, Caldarelli S, Farias AD, Gonzalez WA (2010) Appl Catal A 386:60–64

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CBMM (Companhia Brasileira de Metalurgia e Mineração) for furnishing niobia sample and FAPERJ for the financial support granted under the program “Support of Scientific and Technological Research in Green Chemistry (E_17/2014)”. CNPq is also acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela S. Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, A.S., Costa, G.C., de Araujo, L.R.R. et al. Insights into the Phosphate Species on Niobia Treated with H3PO4. Catal Lett 150, 1496–1504 (2020). https://doi.org/10.1007/s10562-019-03056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03056-3

Keywords

Navigation