Skip to main content
Log in

Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Small molecules with multi-target activity, also termed promiscuous compounds, are increasingly considered for pharmaceutical applications. The use of promiscuous chemical entities represents a departure from the compound specificity paradigm, one of the pillars of modern drug discovery. The popularity of promiscuous compounds is due to the concept of polypharmacology; another more recent drug discovery paradigm. It refers to insights that the efficacy of drugs often depends on interactions with multiple targets. Views concerning the extent to which small molecules might form well-defined interactions with multiple targets often differ, but comprehensive experimental investigations of promiscuity are currently rare. On the other hand, large volumes of active compounds and experimental measurements are becoming available and enable data-driven analyses of compound selectivity versus promiscuity. In this perspective, we discuss computational methods and data structures designed for promiscuity analysis. In addition, findings from large-scale exploration of activity profiles of inhibitors covering the human kinome are summarized. Although many kinase inhibitors are expected to be promiscuous, they are frequently found to be selective, which provides opportunities for target-directed drug discovery (rather than polypharmacology). We also discuss that machine learning yields evidence for the existence of structure–promiscuity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hu Y, Bajorath J (2013) Compound promiscuity: what can we learn from current data? Drug Discov Today 18:644–650

    CAS  PubMed  Google Scholar 

  2. Hu Y, Bajorath J (2017) Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited. Future Sci OA 3:FSO179

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    CAS  PubMed  Google Scholar 

  4. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–148

    CAS  PubMed  Google Scholar 

  5. Shoichet BK (2006) Screening in a spirit haunted world. Drug Discov Today 11:607–615

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    CAS  PubMed  Google Scholar 

  7. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483

    CAS  PubMed  Google Scholar 

  8. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887

    CAS  PubMed  Google Scholar 

  9. Proschak E, Stark H, Merk D (2019) Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds. J Med Chem 62:420–444

    CAS  PubMed  Google Scholar 

  10. Bolognesi ML (2019) Harnessing polypharmacology with medicinal chemistry. ACS Med Chem Lett 10:273–275

    CAS  PubMed  Google Scholar 

  11. Mei Y, Yang B (2018) Rational application of drug promiscuity in medicinal chemistry. Future Med Chem 10:1835–1851

    CAS  PubMed  Google Scholar 

  12. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    CAS  PubMed  Google Scholar 

  13. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J, Romanov S, Sepetov N, Huang XP, Roth BL, Al Haj Zen A, Fourches D, Muratov E, Tropsha A, Morris J, Teicher BA, Kunkel M, Polley E, Lackey KE, Atkinson FL, Overington JP, Bamborough P, Müller S, Price DJ, Willson TM, Drewry DH, Knapp S, Zuercher WJ (2016) Comprehensive characterization of the published kinase inhibitor set. Nat Biotechnol 34:95–103

    CAS  PubMed  Google Scholar 

  15. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tõnisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B (2017) The target landscape of clinical kinase drugs. Science 358:eaan4368

    PubMed  PubMed Central  Google Scholar 

  16. Hu Y, Bajorath J (2013) High-resolution view of compound promiscuity. F1000Research 2:e144

    Google Scholar 

  17. Jasial S, Hu Y, Bajorath J (2016) Determining the degree of promiscuity of extensively assayed compounds. PLoS ONE 11:e0153873

    PubMed  PubMed Central  Google Scholar 

  18. Stumpfe D, Tinivella A, Rastelli G, Bajorath J (2017) Promiscuity of inhibitors of human protein kinases at varying data confidence levels and test frequencies. RSC Adv 7:41265–41271

    CAS  Google Scholar 

  19. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    CAS  PubMed  Google Scholar 

  21. Wang L, Ma C, Wipf P, Liu H, Su W, Xie X-Q (2013) TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. AAPS J 15:395–406

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Awale M, Reymond J-L (2017) The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J Cheminform 9:e11

    Google Scholar 

  23. Jasial S, Gilberg E, Blaschke T, Bajorath J (2018) Machine learning distinguishes with high accuracy between pan-assay interference compounds that are promiscuous or represent dark chemical matter. J Med Chem 61:10255–10264

    CAS  PubMed  Google Scholar 

  24. Blaschke T, Miljković F, Bajorath J (2019) Prediction of different classes of promiscuous and nonpromiscuous compounds using machine learning and nearest neighbor analysis. ACS Omega 4:6883–6890

    CAS  Google Scholar 

  25. Miljković F, Kunimoto R, Bajorath J (2017) Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds. Future Sci OA 3:FSO212

    PubMed  PubMed Central  Google Scholar 

  26. Reker D, Bernardes GJL, Rodrigues T (2019) Computational advances in combating colloidal aggregation in drug discovery. Nat Chem 11:402–418

    CAS  PubMed  Google Scholar 

  27. Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP (2019) Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov. https://doi.org/10.1080/17460441.2019.1654453

    Article  PubMed  Google Scholar 

  28. Haupt JV, Daminelli S, Schroeder M (2013) Drug promiscuity in PDB: protein binding site similarity is key. PLoS ONE 8:e65894

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pinzi L, Caporuscio F, Rastelli G (2018) Selection of protein conformations for structure-based polypharmacology studies. Drug Discov Today 23:1889–1896

    CAS  PubMed  Google Scholar 

  30. Gilberg E, Stumpfe D, Bajorath J (2018) X-ray structure-based identification of compounds with activity against targets from different families and generation of templates for multitarget ligand design. ACS Omega 3:106–111

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilberg E, Gütschow M, Bajorath J (2019) Promiscuous ligands from experimentally determined structures, binding conformations, and protein family-dependent interaction hotspots. ACS Omega 4:1729–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilberg E, Bajorath J (2019) Recent progress in structure-based evaluation of compound promiscuity. ACS Omega 4:2758–2765

    CAS  Google Scholar 

  33. Mestres J, Gregori-Puigjané E, Valverde S, Solé RV (2008) Data completeness—the Achilles heel of drug-target networks. Nat Biotechnol 26:983–984

    CAS  PubMed  Google Scholar 

  34. Mestres J, Gregori-Puigjané E, Valverde S, Solé RV (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol BioSyst 5:1051–1057

    CAS  PubMed  Google Scholar 

  35. Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints. J Chem Inf Model 46:1535

    CAS  PubMed  Google Scholar 

  36. Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942

    CAS  PubMed  Google Scholar 

  37. Dimova D, Bajorath J (2018) Rationalizing promiscuity cliffs. ChemMedChem 13:490–494

    CAS  PubMed  Google Scholar 

  38. Kenny PW, Sadowski J (2005) Structure modification in chemical databases. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim, pp 271–285

    Google Scholar 

  39. Hu Y, Jasial S, Gilberg E, Bajorath J (2017) Structure-promiscuity relationship puzzles—extensively assayed analogs with large differences in target annotations. AAPS J 19:856–864

    PubMed  Google Scholar 

  40. Dimova D, Gilberg E, Bajorath J (2017) Identification and analysis of promiscuity cliffs formed by bioactive compounds and experimental implications. RSC Adv 7:58–66

    CAS  Google Scholar 

  41. Miljković F, Bajorath J (2018) Computational analysis of kinase inhibitors identifies promiscuity cliffs across the human kinome. ACS Omega 3:17295–17308

    Google Scholar 

  42. Miljković F, Vogt M, Bajorath J (2019) Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. J Comput Aided Mol Des 33:559–572

    PubMed  Google Scholar 

  43. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Google Scholar 

  44. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10:130–137

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miljković F, Bajorath J (2019) Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome. Fut Sci OA 5:FSO404

    Google Scholar 

  46. Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discovery 1:309–315

    CAS  PubMed  Google Scholar 

  47. Simmons DL (2013) Targeting kinases: a new approach to treating inflammatory rheumatic diseases. Curr Opin Pharmacol 13:426–434

    CAS  PubMed  Google Scholar 

  48. Laufer S, Bajorath J (2014) New frontiers in kinases: second generation inhibitors. J Med Chem 57:2167–2168

    CAS  PubMed  Google Scholar 

  49. Gavrin LK, Saiah E (2013) Approaches to discover non-ATP site kinase inhibitors. Med Chem Commun 4:41–51

    CAS  Google Scholar 

  50. Zhao Z, Wu H, Wang L, Liu Y, Knapp S, Liu Q, Gray NS (2014) Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 9:1230–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu Y, Furtmann N, Bajorath J (2015) Current compound coverage of the kinome. J Med Chem 58:30–40

    CAS  PubMed  Google Scholar 

  52. Miljković F, Rodríguez-Pérez R, Bajorath J (2019) Machine learning models for accurate prediction of kinase inhibitors with different binding modes. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b00867

    Article  PubMed  Google Scholar 

  53. Miljković F, Bajorath J (2018) Exploring selectivity of multikinase inhibitors across the human kinome. ACS Omega 3:1147–1153

    PubMed  PubMed Central  Google Scholar 

  54. Miljković F, Bajorath J (2018) Reconciling selectivity trends from a comprehensive kinase inhibitor profiling campaign with known activity data. ACS Omega 3:3113–3119

    PubMed  PubMed Central  Google Scholar 

  55. Levitzki A (2013) Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu Rev Pharmacol Toxicol 53:161–185

    CAS  PubMed  Google Scholar 

  56. Wu P, Dinér P, Bunch L (2018) The screening and design of allosteric kinase inhibitors. In: Ward RA, Goldberg FW (eds) Kinase drug discovery: modern approaches. RSC, Cambridge, pp 34–60

    Google Scholar 

  57. Miljković F, Bajorath J (2018) Data-driven exploration of selectivity and off-target activities of designated chemical probes. Molecules 23:e2434

    PubMed  Google Scholar 

  58. Rodríguez-Pérez R, Bajorath J (2019) Multitask machine learning for classifying highly and weakly potent kinase inhibitors. ACS Omega 4:4367–4375

    Google Scholar 

  59. Li X, Li Z, Wu X, Xiong Z, Yang T, Fu Z, Liu X, Tan X, Zhong F, Wan X, Wang D, Ding X, Yang R, Hou H, Li C, Liu H, Chen K, Jiang H, Zheng M (2019) Deep learning enhancing kinome-wide polypharmacology profiling: model construction and experiment validation. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b00855

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li Z, Li X, Liu X, Fu Z, Xiong Z, Wu X, Tan X, Zhao J, Zhong F, Wan X, Luo X, Chen K, Jiang H, Zheng M (2019) KinomeX: a web application for predicting kinome-wide polypharmacology effect on small molecules. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz519

    Article  PubMed  PubMed Central  Google Scholar 

  61. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  62. Joachims T (1999) Making large-scale SVM learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 169–184

    Google Scholar 

  63. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  64. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gomez-Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graph for learning molecular fingerprints. Neural Inf Proc Sys 28:2224–2232

    Google Scholar 

  65. Balfer J, Bajorath J (2015) Visualization and interpretation of support vector machine activity predictions. J Chem Inf Model 55:1136–1147

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miljković, F., Bajorath, J. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome. J Comput Aided Mol Des 34, 1–10 (2020). https://doi.org/10.1007/s10822-019-00266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00266-0

Keywords

Navigation