Skip to main content
Log in

Regulation of the Degree of Interpenetration in Metal–Organic Frameworks

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Interpenetration in metal–organic frameworks (MOFs) can have significant impacts on the structure, porous nature, and functional applications of MOFs. Considered to be disadvantageous in the initial phases leading to a decrease in surface area, interpenetration has proved to be highly useful for modulation of pore size and selective separation of gases. The importance of interpenetration has been realized over the last decade, and numerous approaches to graft interpenetration and utilize it for improved functions and applications have been achieved. Several factors such as temperature, solvent system, time duration and steric aspects of the ligands have been utilized to regulate the degree of interpenetration (DOI). In this review, we summarize recent advances in regulating the DOI in MOFs and its impact on the resulting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Adapted with permission from Refs. [81, 86, 88, 126, 127, 131, 132]

Fig. 1

Adapted from Web of Science search on frameworks reported with the terms “metal–organic frameworks” and “interpenetration” in all databases from 2000 to 2019

Fig. 2

Reproduced with permission from Ref. [51]

Fig. 3

Reproduced with permission from Ref. [52]

Fig. 4

Reproduced with permission from Ref. [47]

Fig. 5

Reproduced with permission from Ref. [59]

Fig. 6

Reproduced with permission from Ref. [60]

Fig. 7
Fig. 8

Reproduced with permission from Ref [61]

Fig. 9

Reproduced with permission from Ref. [62]

Fig. 10

Reproduced with permission from Ref. [63]

Scheme 2

Reproduced with permission from Ref. [64]

Fig. 11

Reproduced with permission from Ref. [65]

Fig. 12

Reproduced with permission from Ref. [66]

Fig. 13

Reproduced with permission from Ref. [67]

Fig. 14

Reproduced with permission from Ref. [68]

Fig. 15

Reproduced with permission from Ref. [69]

Fig. 16

Reproduced with permission from Ref. [70]

Fig. 17

Reproduced with permission from Ref. [53]

Fig. 18

Reproduced with permission from Ref. [114]

Fig. 19

Reproduced with permission from Ref. [115]

Fig. 20

Reproduced with permission from Ref. [116]

Fig. 21

Reproduced with permission from Ref. [116]

Fig. 22

Reproduced with permission from Ref. [117]

Fig. 23

Reproduced with permission from Ref. [118]

Fig. 24

Reproduced with permission from Ref. [119]

Fig. 25

Reproduced with permission from Ref. [120]

Fig. 26

Reproduced with permission from Ref. [85]

Fig. 27

Reproduced with permission from Ref. [86]

Fig. 28

Reproduced with permission from Ref. [121]

Fig. 29

Reproduced with permission from Ref. [87]

Fig. 30

Reproduced with permission from Ref. [88]

Fig. 31

Reproduced with permission from Ref. [122]

Fig. 32

Reproduced with permission from Ref. [123]

Fig. 33

Reproduced with permission from Ref. [124]

Fig. 34

Reproduced with permission from Ref. [125]

Fig. 35

Reproduced with permission from Ref. [126]

Fig. 36

Reproduced with permission from Ref. [127]

Fig. 37

Reproduced with permission from Ref. [128]

Fig. 38a–c

Reproduced with permission from Ref. [129]

Fig. 39

Reproduced with permission from Ref. [130]

Fig. 40

Reproduced with permission from Ref. [131]

Scheme 3a–c
Fig. 41

Reproduced with permission from Ref. [132]

Fig. 42

Reproduced with permission from Ref. [133]

Fig. 43

Reproduced with permission from Ref. [134]

Similar content being viewed by others

References

  1. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    CAS  PubMed  Google Scholar 

  2. James SL (2003) Metal–organic frameworks. Chem Soc Rev 32:276–288

    CAS  PubMed  Google Scholar 

  3. Meek ST, Greathouse JA, Allendorf MD (2011) Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267

    CAS  PubMed  Google Scholar 

  4. Gharib M, Safarifard V, Morsali A (2018) Ultrasound assisted synthesis of amide functionalized metal–organic framework for nitroaromatic sensing. Ultrason Sonochem 42:112–118

    CAS  PubMed  Google Scholar 

  5. Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, Xing H (2017) Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed 56:16282–16287

    CAS  Google Scholar 

  6. Batten Stuart R, Champness Neil R, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem. https://doi.org/10.1351/PAC-REC-12-11-20

    Article  Google Scholar 

  7. MacGillivray LR (2010) Metal–organic frameworks: design and application. Wiley, New York

    Google Scholar 

  8. Stock N, Biswas S (2012) Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969

    CAS  PubMed  Google Scholar 

  9. Cook TR, Zheng Y-R, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem Rev 113:734–777

    CAS  PubMed  Google Scholar 

  10. Cheong VF, Moh PY (2018) Recent advancement in metal–organic framework: synthesis, activation, functionalisation, and bulk production. Mater Sci Technol 34:1025–1045

    CAS  Google Scholar 

  11. Kalmutzki MJ, Hanikel N, Yaghi OM (2018) Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci Adv 4:eaat9180

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle Iii T, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    CAS  PubMed  Google Scholar 

  13. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–orrganic frameworks. Science 341:1230444

    PubMed  Google Scholar 

  14. Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638

    CAS  PubMed  Google Scholar 

  15. Lin Z-J, Lü J, Hong M, Cao R (2014) Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem Soc Rev 43:5867–5895

    CAS  PubMed  Google Scholar 

  16. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H-C (2018) Stable metal–orrganic frameworks: design, synthesis, and applications. Adv Mater 30:1704303

    Google Scholar 

  17. Ding M, Flaig RW, Jiang H-L, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48:2783–2828

    CAS  PubMed  Google Scholar 

  18. Hendon CH, Rieth AJ, Korzyński MD, Dincă M (2017) Grand challenges and future opportunities for metal–orrganic frameworks. ACS Cent Sci 3:554–563

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ricco R, Pfeiffer C, Sumida K, Sumby CJ, Falcaro P, Furukawa S, Champness NR, Doonan CJ (2016) Emerging applications of metal–organic frameworks. CrystEngComm 18:6532–6542

    CAS  Google Scholar 

  20. Tansell AJ, Jones CL, Easun TL (2017) MOF the beaten track: unusual structures and uncommon applications of metal–organic frameworks. Chem Cent J 11:100

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Allendorf MD, Stavila V (2015) Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 17:229–246

    CAS  Google Scholar 

  22. Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G (2012) Revealing the structure–property relationships of metal–orrganic frameworks for CO2 capture from flue gas. Langmuir 28:12094–12099

    CAS  PubMed  Google Scholar 

  23. Alkordi MH, Belmabkhout Y, Cairns A, Eddaoudi M (2017) Metal–orrganic frameworks for H2 and CH4 storage: insights on the pore geometry-sorption energetics relationship. IUCrJ 4:131–135

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang Z, Dürholt JP, Kauer M, Zhang W, Lochenie C, Jee B, Albada B, Metzler-Nolte N, Pöppl A, Weber B, Muhler M, Wang Y, Schmid R, Fischer RA (2014) Structural complexity in metal–orrganic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J Am Chem Soc 136:9627–9636

    CAS  PubMed  Google Scholar 

  25. Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal–organic frameworks—influence of structure and chemical bonding. APL Mater 2:123902

    Google Scholar 

  26. Jeong W, Lim D-W, Kim S, Harale A, Yoon M, Suh MP, Kim J (2017) Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proc Natl Acad Sci USA 114:7923–7928

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang H-L, Makal TA, Zhou H-C (2013) Interpenetration control in metal–organic frameworks for functional applications. Coord Chem Rev 257:2232–2249

    CAS  Google Scholar 

  28. Haldar R, Sikdar N, Maji TK (2015) Interpenetration in coordination polymers: structural diversities toward porous functional materials. Mater Today 18:97–116

    CAS  Google Scholar 

  29. Networks, topologies, and entanglements. In: Making crystals by design, pp 58–85. https://doi.org/10.1002/9783527610112.ch3

  30. Topology. In: Introduction to reticular chemistry, pp 429–452. https://doi.org/10.1002/9783527821099.ch18

  31. Gong Y-N, Zhong D-C, Lu T-B (2016) Interpenetrating metal–organic frameworks. CrystEngComm 18:2596–2606

    CAS  Google Scholar 

  32. Öhrström L (2015) Let’s talk about MOFs—topology and terminology of metal–orrganic frameworks and why we need them. Crystals 5:154–162

    Google Scholar 

  33. Frank M, Johnstone MD, Clever GH (2016) interpenetrated cage structures. Chemistry 22:14104–14125

    CAS  PubMed  Google Scholar 

  34. Zhu R, Ding J, Jin L, Pang H (2019) Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev 389:119–140

    CAS  Google Scholar 

  35. Yaghi OM (2007) A tale of two entanglements. Nat Mater 6:92

    CAS  PubMed  Google Scholar 

  36. Zhao D, Timmons DJ, Yuan D, Zhou H-C (2011) Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc Chem Res 44:123–133

    CAS  PubMed  Google Scholar 

  37. Batten SR, Robson R (1998) Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed 37:1460–1494

    Google Scholar 

  38. Batten SR (2001) Topology of interpenetration. CrystEngComm 3:67–72

    Google Scholar 

  39. Li N, Xu J, Feng R, Hu T-L, Bu X-H (2016) Governing metal–organic frameworks towards high stability. Chem Commun 52:8501–8513

    CAS  Google Scholar 

  40. Yin Z, Zhou Y-L, Zeng M-H, Kurmoo M (2015) The concept of mixed organic ligands in metal–orrganic frameworks: design, tuning and functions. Dalton Trans 44:5258–5275

    CAS  PubMed  Google Scholar 

  41. Cairns AB, Goodwin AL (2013) Structural disorder in molecular framework materials. Chem Soc Rev 42:4881–4893

    CAS  PubMed  Google Scholar 

  42. Farha OK, Hupp JT (2010) Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc Chem Res 43:1166–1175

    CAS  PubMed  Google Scholar 

  43. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem Soc Rev 41:2308–2322

    CAS  PubMed  Google Scholar 

  44. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121

    CAS  Google Scholar 

  45. Morris RE, Brammer L (2017) Coordination change, lability and hemilability in metal–organic frameworks. Chem Soc Rev 46:5444–5462

    CAS  PubMed  Google Scholar 

  46. Liang W, Bhatt PM, Shkurenko A, Adil K, Mouchaham G, Aggarwal H, Mallick A, Jamal A, Belmabkhout Y, Eddaoudi M (2019) A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas. Chem 5:950–963

    CAS  Google Scholar 

  47. Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal–organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859

    CAS  PubMed  Google Scholar 

  48. Burtch NC, Walton KS (2015) Modulating adsorption and stability properties in pillared metal–orrganic frameworks: a model system for understanding ligand effects. Acc Chem Res 48:2850–2857

    CAS  PubMed  Google Scholar 

  49. Carlucci L, Ciani G, Proserpio DM, Mitina TG, Blatov VA (2014) Entangled two-dimensional coordination networks: a general survey. Chem Rev 114:7557–7580

    CAS  PubMed  Google Scholar 

  50. Kwon O, Park S, Zhou H-C, Kim J (2017) Computational prediction of hetero-interpenetration in metal–organic frameworks. Chem Commun 53:1953–1956

    CAS  Google Scholar 

  51. Babarao R, Coghlan CJ, Rankine D, Bloch WM, Gransbury GK, Sato H, Kitagawa S, Sumby CJ, Hill MR, Doonan CJ (2014) Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series. Chem Commun 50:3238–3241

    CAS  Google Scholar 

  52. Bara D, Wilson C, Mörtel M, Khusniyarov MM, Ling S, Slater B, Sproules S, Forgan RS (2019) Kinetic control of interpenetration in Fe–biphenyl-4,4′-dicarboxylate metal–orrganic frameworks by coordination and oxidation modulation. J Am Chem Soc 141:8346–8357

    CAS  PubMed  Google Scholar 

  53. Vicent-Morales M, Vitorica-Yrezabal IJ, Souto M, Minguez Espallargas G (2019) Influence of interpenetration on the flexibility of MUV-2. CrystEngComm 21:3031–3035

    CAS  Google Scholar 

  54. Dan-Hardi M, Chevreau H, Devic T, Horcajada P, Maurin G, Férey G, Popov D, Riekel C, Wuttke S, Lavalley J-C, Vimont A, Boudewijns T, de Vos D, Serre C (2012) How interpenetration ensures rigidity and permanent porosity in a highly flexible hybrid solid. Chem Mater 24:2486–2492

    CAS  Google Scholar 

  55. Dincǎ M, Dailly A, Tsay C, Long JR (2008) Expanded sodalite-type metal–organic frameworks: increased stability and H2 adsorption through ligand-directed catenation. Inorg Chem 47:11–13

    PubMed  Google Scholar 

  56. Ye Y, Xiong S, Wu X, Zhang L, Li Z, Wang L, Ma X, Chen Q-H, Zhang Z, Xiang S (2016) Microporous metal–orrganic framework stabilized by balanced multiple host-couteranion hydrogen-bonding interactions for high-density CO2 capture at ambient conditions. Inorg Chem 55:292–299

    CAS  PubMed  Google Scholar 

  57. Jiang M, Li B, Cui X, Yang Q, Bao Z, Yang Y, Wu H, Zhou W, Chen B, Xing H (2018) Controlling pore shape and size of interpenetrated anion-pillared ultramicroporous materials enables molecular sieving of CO2 combined with ultrahigh uptake capacity. ACS Appl Mater Interfaces 10:16628–16635

    CAS  PubMed  Google Scholar 

  58. Lahoz-Martín FD, Calero S, Gutiérrez-Sevillano JJ, Martin-Calvo A (2017) Adsorptive separation of ethane and ethylene using isoreticular metal–orrganic frameworks. Microporous Mesoporous Mater 248:40–45

    Google Scholar 

  59. Yang Q-Y, Lama P, Sen S, Lusi M, Chen K-J, Gao W-Y, Shivanna M, Pham T, Hosono N, Kusaka S, Perry Iv JJ, Ma S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ (2018) Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate-opening at methane storage pressures. Angew Chem Int Ed 57:5684–5689

    CAS  Google Scholar 

  60. Lapidus SH, Halder GJ, Chupas PJ, Chapman KW (2013) Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2. J Am Chem Soc 135:7621–7628

    CAS  PubMed  Google Scholar 

  61. Aggarwal H, Das RK, Bhatt PM, Barbour LJ (2015) Isolation of a structural intermediate during switching of degree of interpenetration in a metal–organic framework. Chem Sci 6:4986–4992

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Wojtas L, Larsen RW, Eddaoudi M, Zaworotko MJ (2009) Temperature and concentration control over interpenetration in a metal–organic material. J Am Chem Soc 131:17040–17041

    CAS  PubMed  Google Scholar 

  63. Wang Y, Cheng L, Wang KJ, Perry Z, Jia W, Chen R, Wang ZL, Pang JD (2019) Temperature-controlled degree of interpenetration in a single-crystal-to-single-crystal transformation within two Co(II)-triazole frameworks. Inorg Chem 58:18–21

    CAS  PubMed  Google Scholar 

  64. Elsaidi SK, Mohamed MH, Wojtas L, Chanthapally A, Pham T, Space B, Vittal JJ, Zaworotko MJ (2014) Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid nets. J Am Chem Soc 136:5072–5077

    CAS  PubMed  Google Scholar 

  65. Ferguson A, Liu L, Tapperwijn SJ, Perl D, Coudert F-X, Van Cleuvenbergen S, Verbiest T, van der Veen MA, Telfer SG (2016) Controlled partial interpenetration in metal–organic frameworks. Nat Chem 8:250

    CAS  PubMed  Google Scholar 

  66. Rankine D, Avellaneda A, Hill MR, Doonan CJ, Sumby CJ (2012) Control of framework interpenetration for in situ modified hydroxyl functionalised IRMOFs. Chem Commun 48:10328–10330

    CAS  Google Scholar 

  67. Prasad TK, Suh MP (2012) Control of interpenetration and gas-sorption properties of metal–organic frameworks by a simple change in ligand design. Chem A Eur J 18:8673–8680

    CAS  Google Scholar 

  68. Lun DJ, Waterhouse GIN, Telfer SG (2011) A general thermolabile protecting group strategy for organocatalytic metal–organic frameworks. J Am Chem Soc 133:5806–5809

    CAS  PubMed  Google Scholar 

  69. Feng D, Wang K, Wei Z, Chen Y-P, Simon CM, Arvapally RK, Martin RL, Bosch M, Liu T-F, Fordham S, Yuan D, Omary MA, Haranczyk M, Smit B, Zhou H-C (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat Commun 5:5723

    CAS  PubMed  Google Scholar 

  70. Lippke J, Brosent B, von Zons T, Virmani E, Lilienthal S, Preuße T, Hülsmann M, Schneider AM, Wuttke S, Behrens P, Godt A (2017) Expanding the group of porous interpenetrated Zr-organic frameworks (PIZOFs) with linkers of different lengths. Inorg Chem 56:748–761

    CAS  PubMed  Google Scholar 

  71. Lu JY, Fernandez WA, Ge Z, Abboud KA (2005) A novel two-fold interpenetrating 3D 42.84 network self-assembled from a new 1D coordination polymer. New J Chem 29:434–438

    CAS  Google Scholar 

  72. Park J, Hong S, Moon D, Park M, Lee K, Kang S, Zou Y, John RP, Kim GH, Lah MS (2007) Porous metal–orrganic frameworks based on metal–orrganic polyhedra with nanosized cavities as supramolecular building blocks: two-fold interpenetrating primitive cubic networks of [Cu6L8]12 + nanocages. Inorg Chem 46:10208–10213

    CAS  PubMed  Google Scholar 

  73. Volkringer C, Loiseau T, Marrot J, Ferey G (2009) A MOF-type magnesium benzene-1,3,5-tribenzoate with two-fold interpenetrated ReO3 nets. CrystEngComm 11:58–60

    CAS  Google Scholar 

  74. Su Z, Fan J, Sun W-Y (2013) Novel two-fold interpenetrated Zn-based metal–orrganic framework with triple-stranded right- and left-handed helical chains. Inorg Chem Commun 27:18–21

    CAS  Google Scholar 

  75. Li F, Hong Y-S, Zuo K-X, Sun Q, Gao E-Q (2019) Highly selective fluorescent probe for Hg2+ and MnO4− by the two-fold interpenetrating metal–organic framework with nitro functionalized linkers. J Solid State Chem 270:509–515

    CAS  Google Scholar 

  76. Mir MH, Kitagawa S, Vittal JJ (2008) Two- and three-fold interpenetrated metal–organic frameworks from one-pot crystallization. Inorg Chem 47:7728–7733

    CAS  PubMed  Google Scholar 

  77. Wang X, Lin H, Mu B, Tian A, Liu G (2010) Encapsulation of discrete (H2O)12 clusters in a 3D three-fold interpenetrating metal–organic framework host with (3,4)-connected topology. Dalton Trans 39:6187–6189

    CAS  PubMed  Google Scholar 

  78. Hu J-S, Zhu C-L, Song X-M, He J (2012) A three-folded interpenetrated metal–organic framework constructed by H-bonding interaction. Mendeleev Commun 22:220–221

    CAS  Google Scholar 

  79. Santra A, Lah MS, Bharadwaj PK (2014) A partially fluorinated three-fold interpenetrated stable metal–organic framework with selective CO2 uptake. Z Anorg Allg Chem 640:1134–1140

    CAS  Google Scholar 

  80. Huang S-y, Li J-q, Wu X-l, Zhang X-m, Luo M-b, Luo F (2014) A novel 4-connected binodal Moganite net with three-fold interpenetration. Inorg Chem Commun 39:1–4

    Google Scholar 

  81. Yang E, Ding Q, Kang Y, Wang F (2014) A photoluminescent metal–organic framework with threefold interpenetrated diamond topological net. J Mol Struct 1072:228–231

    CAS  Google Scholar 

  82. Tynan E, Jensen P, Kelly NR, Kruger PE, Lees AC, Moubaraki B, Murray KS (2004) The ligand, the metal and the Holey’-host: synthesis, structural and magnetic characterization of Co(II), Ni(II) and Mn(II) metal–organic frameworks incorporating 4,4′-dicarboxy-2,2′-bipyridine. Dalton Trans 2004:3440–3447

    Google Scholar 

  83. Xu J, Bai Z-s, Chen M-s, Su Z, Chen S-s, Sun W-y (2009) Metal–organic frameworks with six- and four-fold interpenetration and their photoluminescence and adsorption property. CrystEngComm 11:2728–2733

    CAS  Google Scholar 

  84. Wu J, Liu J-Q, Jia Z-B, Li Q-L, Li K-B, Li H, Daiguebonne C, Calvez G, Guillou O (2014) A new 3D four-fold interpenetrated dia-like polymer: gas sorption and computational analyses. CrystEngComm 16:10410–10417

    CAS  Google Scholar 

  85. Zhu H-B, Shen Y, Fu Z-Z, Yu Y-Y, Jiang Y-F, Zhao Y (2019) A multifunctional Zn(II)-based four-fold interpenetrated metal–organic framework for highly sensitive sensing 2,4,6-trinitrophenol (TNP), nitrofurazone (NFZ) and nitrofurantoin (NFT). Inorg Chem Commun 103:21–24

    CAS  Google Scholar 

  86. Chen Y-Q, Li G-R, Chang Z, Qu Y-K, Zhang Y-H, Bu X-H (2013) A Cu(i) metal–organic framework with 4-fold helical channels for sensing anions. Chem Sci 4:3678–3682

    CAS  Google Scholar 

  87. Wen G-L, Wang Y-Y, Zhang Y-N, Yang G-P, Fu A-Y, Shi Q-Z (2009) A novel polythreaded metal–organic framework with inherent features of different side arms and five-fold interpenetration. CrystEngComm 11:1519–1521

    CAS  Google Scholar 

  88. Wei Y-L, Li J-B, Song W-C, Zang S-Q (2012) Five-fold interpenetrating diamondlike 3D metal–organic frameworks constructed from the rigid 1,2-di(pyridin-4-yl)ethane-1,2-diol ligand and aromatic carboxylate. Inorg Chem Commun 15:16–20

    CAS  Google Scholar 

  89. Liu C, Cui G-H, Zou K-Y, Zhao J-L, Gou X-F, Li Z-X (2013) Unusual six-connected self-catenated network with 5-fold interpenetrated CdSO4 subnets: stepwise synthesis, topology analysis and fluorescence properties. CrystEngComm 15:324–331

    CAS  Google Scholar 

  90. Huo J, Yan S, Li H, Yu D, Arulsamy N (2018) Three new 5-fold interpenetrating diamondoid frameworks constructed by rigid diimidazole and dicarboxylate ligands. J Mol Struct 1156:224–229

    CAS  Google Scholar 

  91. Lu Y-M, Lan Y-Q, Xu Y-H, Su Z-M, Li S-L, Zang H-Y, Xu G-J (2009) Interpenetrating metal–organic frameworks formed by self-assembly of tetrahedral and octahedral building blocks. J Solid State Chem 182:3105–3112

    CAS  Google Scholar 

  92. Wu Q-R, Wang J-J, Hu H-M, Wang B-C, Wu X-L, Fu F, Li D-S, Yang M-L, Xue G-L (2010) Two novel cadmium(II) coordination polymers based on bis-functionalized ligand 4′-(4-carboxyphenyl)-2,2′:6′,2′’-terpyridine. Inorg Chem Commun 13:715–719

    CAS  Google Scholar 

  93. Wang N, Ma J-G, Shi W, Cheng P (2012) Two novel Cd(II) complexes with unprecedented four- and six-fold interpenetration. CrystEngComm 14:5198–5202

    CAS  Google Scholar 

  94. Xu H, Bao W, Xu Y, Liu X, Shen X, Zhu D (2012) An unprecedented 3D/3D hetero-interpenetrated MOF built from two different nodes, chemical composition, and topology of networks. CrystEngComm 14:5720–5722

    CAS  Google Scholar 

  95. Zhou X, Li B, Li G, Qi Z, Shi Z, Feng S (2012) Synthesis, structures and luminescent properties of cadmium(II) metal organic frameworks based on 3-pyrid-4-ylbenzoic acid, 4-pyrid-4-ylbenzoic acid ligands. CrystEngComm 14:4664–4669

    CAS  Google Scholar 

  96. Kole GK, Vittal JJ (2013) Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42:1755–1775

    CAS  PubMed  Google Scholar 

  97. Luo Q-D, Fan C-B, Zhang X, Meng X-M, Zhu Z, Jin F, Fan Y-H (2017) 5- and 7-fold interpenetrating 3D NiII/CoII MOFs modulated by dicarboxylate and bis(imidazole) mixed ligands: syntheses, topology structure, photodegradation properties. Inorg Chem Commun 76:108–113

    CAS  Google Scholar 

  98. Mei L, Wang C-z, Zhu L-z, Gao Z-q, Chai Z-f, Gibson JK, Shi W-q (2017) Exploring new assembly modes of uranyl terephthalate: templated syntheses and structural regulation of a series of rare 2D → 3D polycatenated frameworks. Inorg Chem 56:7694–7706

    CAS  PubMed  Google Scholar 

  99. Lysenko AB, Govor EV, Krautscheid H, Domasevitch KV (2006) Metal–organic frameworks incorporating Cu3(μ3-OH) clusters. Dalton Trans 2006:3772–3776

    Google Scholar 

  100. Rivera-Carrillo M, Chakraborty I, Raptis RG (2010) Systematic synthesis of a metal organic framework based on triangular Cu3(μ3-OH) secondary building units: from a 0-D complex to a 1-D chain and a 3-D lattice. Cryst Growth Des 10:2606–2612

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng X-C, Zhu X-H, Kuai H-W (2012) Eight-fold interpenetrating diamond-like metal–organic frameworks constructed with an N- and O-donor ligand for cadmium(II) and manganese(II). Z Naturforsch B J Chem Sci 67:1248–1254

    CAS  Google Scholar 

  102. Sun D, Yan Z-H, Liu M, Xie H, Yuan S, Lu H, Feng S, Sun D (2012) Three- and eight-fold interpenetrated ThSi2 metal–organic frameworks fine-tuned by the length of ligand. Cryst Growth Des 12:2902–2907

    CAS  Google Scholar 

  103. Huang S-y, Li J-q, Wu X-l, Zhang X-m, Luo M-b, Luo F (2014) A new acrylamide MOF with sra net showing an uncommon eight-fold interpenetration. Inorg Chem Commun 44:29–31

    CAS  Google Scholar 

  104. Zhou M, Yan D, Dong Y, He X, Xu Y (2017) Chiral [Mo8O26]4-polyoxoanion-induced three-dimensional architectures with homochiral eight-fold interpenetrated metal–organic frameworks. Inorg Chem 56:9036–9043

    CAS  PubMed  Google Scholar 

  105. Dang L-l, Li J-q, Liu S-j, Luo M-b, Luo F (2014) A new acylamide MOF showing uncommon ten-fold interpenetration. Inorg Chem Commun 45:30–32

    CAS  Google Scholar 

  106. Ahmad M, Katoch R, Garg A, Bharadwaj PK (2014) A novel 3D 10-fold interpenetrated homochiral coordination polymer: large spontaneous polarization, dielectric loss and emission studies. CrystEngComm 16:4766–4773

    CAS  Google Scholar 

  107. Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J Am Chem Soc 117:10401–10402

    CAS  Google Scholar 

  108. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal–organic framework on a periodic minimal surface with extra-large pores. Science 291:1021–1023

    CAS  PubMed  Google Scholar 

  109. Sun D, Ma S, Ke Y, Collins DJ, Zhou H-C (2006) An interweaving MOF with high hydrogen uptake. J Am Chem Soc 128:3896–3897

    CAS  PubMed  Google Scholar 

  110. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J Am Chem Soc 128:1304–1315

    CAS  PubMed  Google Scholar 

  111. Maji TK, Matsuda R, Kitagawa S (2007) A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater 6:142–148

    CAS  PubMed  Google Scholar 

  112. Ma S, Wang X-S, Yuan D, Zhou H-C (2008) A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47:4130–4133

    CAS  Google Scholar 

  113. Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) The inconsistency in adsorption properties and powder XRD data of MOF-5 Is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129:3612–3620

    CAS  PubMed  Google Scholar 

  114. Liu L, Yao Z, Ye Y, Lin Q, Chen S, Zhang Z, Xiang S (2018) Enhanced intrinsic proton conductivity of metal–organic frameworks by tuning the degree of interpenetration. Cryst Growth Des 18:3724–3728

    CAS  Google Scholar 

  115. Gupta V, Mandal SK (2019) A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture. Dalton Trans 48:415–425

    PubMed  Google Scholar 

  116. Shi Z-Q, Guo Z-J, Zheng H-G (2015) Two luminescent Zn(ii) metal–organic frameworks for exceptionally selective detection of picric acid explosives. Chem Commun 51:8300–8303

    CAS  Google Scholar 

  117. Tan A-d, Wang Y-f, Fu Z-y, Tsiakaras P, Liang Z-x (2017) Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal–organic frameworks. Appl Catal B 218:260–266

    CAS  Google Scholar 

  118. Liu Y-L, Yue K-F, Shan B-H, Xu L-L, Wang C-J, Wang Y-Y (2012) A new 3-fold interpenetrated metal–organic framework (MOF) based on trinuclear zinc(II) clusters as secondary building unit (SBU). Inorg Chem Commun 17:30–33

    CAS  Google Scholar 

  119. Wu H-Y, Wang R-X, Yang W, Chen J, Sun Z-M, Li J, Zhang H (2012) 3-fold-interpenetrated uranium-organic frameworks: new strategy for rationally constructing three-dimensional uranyl organic materials. Inorg Chem 51:3103–3107

    CAS  PubMed  Google Scholar 

  120. Mei L, Wu Q-y, An S-w, Gao Z-q, Chai Z-f, Shi W-q (2015) Silver ion-mediated heterometallic three-fold interpenetrating uranyl-organic framework. Inorg Chem 54:10934–10945

    CAS  PubMed  Google Scholar 

  121. Zhang Y, Wang L, Yao R-X, Zhang X-M (2017) Fourfold-interpenetrated MOF [Ni(pybz)2] as coating material in gas chromatographic capillary column for separation. Inorg Chem 56:8912–8919

    CAS  PubMed  Google Scholar 

  122. Aggarwal H, Das RK, Engel ER, Barbour LJ (2017) A five-fold interpenetrated metal–organic framework showing a large variation in thermal expansion behaviour owing to dramatic structural transformation upon dehydration–rehydration. Chem Commun 53:861–864

    CAS  Google Scholar 

  123. Zhang X-T, Chen H-T, Li B, Liu G-Z, Liu X-Z (2018) 3-Fold and 6-Fold interpenetrating diamond nets based on the designed N, N’-dioxide 3,3′-benzo(c)cinnoline dicarboxylic acid with highly sensitive luminescence sensing for NACs and Fe3+ ion. J Solid State Chem 267:28–34

    CAS  Google Scholar 

  124. Kang X-M, Cheng R-R, Xu H, Wang W-M, Zhao B (2017) A sensitive luminescent acetylacetone probe based on Zn-MOF with six-fold interpenetration. Chem A Eur J 23:13289–13293

    CAS  Google Scholar 

  125. Song B-Q, Qin C, Zhang Y-T, An L-T, Shao K-Z, Su Z-M (2015) A novel [4 + 3] interpenetrated net containing 7-fold interlocking pseudo-helical chains and exceptional catenane-like motifs. Dalton Trans 44:2844–2851

    CAS  PubMed  Google Scholar 

  126. Li S-L, Han M, Zhang Y, Li G-P, Li M, He G, Zhang X-M (2019) X-ray and UV dual photochromism, thermochromism, electrochromism, and amine-selective chemochromism in an Anderson-like Zn7 cluster-based 7-fold interpenetrated framework. J Am Chem Soc 141:12663–12672

    CAS  PubMed  Google Scholar 

  127. Cheng X, Zhu X-H, Kuai H-W (2012) Eight-fold interpenetrating diamond-like metal–organic frameworks constructed with an N- and O-donor ligand for cadmium(II) and Manganese(II). Chemistry 67b. https://doi.org/10.5560/znb.2012-0215

    CAS  Google Scholar 

  128. Chen Z, Gallo G, Sawant VA, Zhang T, Zhu M, Liang L, Chanthapally A, Bolla G, Quah HS, Liu X, Loh KP, Dinnebier RE, Xu Q-H, Vittal JJ (2019) Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal–organic framework (MOF). Angew Chem Int Ed. doi: 10.1002/anie.201911632

    PubMed  Google Scholar 

  129. Tseng T-W, Luo T-T, Tsai C-C, Lu K-L (2015) A huge diamondoid metal–organic framework with a neo-mode of tenfold interpenetration. CrystEngComm 17:2935–2939

    CAS  Google Scholar 

  130. Loukopoulos E, Michail A, Kostakis GE (2018) A 12-fold ThSi2 interpenetrated network utilizing a glycine-based pseudopeptidic ligand. Crystals 8:47

    Google Scholar 

  131. Wu H, Yang J, Su Z-M, Batten SR, Ma J-F (2011) An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. J Am Chem Soc 133:11406–11409

    CAS  PubMed  Google Scholar 

  132. Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Mark Thomas K, Blake AJ, Schröder M (2012) A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat Mater 11:710

    CAS  PubMed  Google Scholar 

  133. Verma G, Kumar S, Pham T, Niu Z, Wojtas L, Perman JA, Chen Y-S, Ma S (2017) Partially interpenetrated NbO topology metal–organic framework exhibiting selective gas adsorption. Cryst Growth Des 17:2711–2717

    CAS  Google Scholar 

  134. O’Nolan D, Madden DG, Kumar A, Chen K-J, Pham T, Forrest KA, Patyk-Kazmierczak E, Yang Q-Y, Murray CA, Tang CC, Space B, Zaworotko MJ (2018) Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance. Chem Commun 54:3488–3491

    Google Scholar 

  135. https://wcs.webofknowledge.com/RA/analyze.do?product=UA&SID=7A4qH71EpekB6LeZp8t&field=PY_PublicationYear_PublicationYear_en&yearSort=true

Download references

Acknowledgments

The authors acknowledge NSF (DMR-1352065) and University of South Florida for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqian Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal-Organic Framework: From Design to Applications”; edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, G., Butikofer, S., Kumar, S. et al. Regulation of the Degree of Interpenetration in Metal–Organic Frameworks. Top Curr Chem (Z) 378, 4 (2020). https://doi.org/10.1007/s41061-019-0268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0268-x

Keywords

Navigation