Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour evolution in hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, typically develops on the background of chronic liver disease and is an aggressive disease with dismal prognosis. Studies using next-generation sequencing of multiple regions of the same tumour nodule suggest different patterns of HCC evolution and confirm the high molecular heterogeneity in a subset of patients. Different hypotheses have been proposed to explain tumour evolution, including clonal selection or neutral and punctuated acquisition of genetic alterations. In parallel, data indicate a fundamental contribution of nonmalignant cells of the tumour microenvironment to cancer clonal evolution. Delineating these dynamics is crucial to improve the treatment of patients with HCC, and particularly to help understand how HCC evolution drives resistance to systemic therapies. A number of new minimally invasive techniques, such as liquid biopsies, could help track cancer evolution in HCC. These tools might improve our understanding of how systemic therapies affect tumour clonal composition and could facilitate implementation of real-time molecular monitoring of patients with HCC.

Key points

  • Hepatocellular carcinoma (HCC), the most frequent form of liver cancer, is a deadly disease that normally arises on the background of chronic liver disease (for example, cirrhosis).

  • Molecular studies have identified the most frequent alterations of HCC; these include mutations in the TERT promoter, TP53, and CTNNB1, copy number variations, and aberrations in DNA methylation.

  • Large studies on tumour evolution in HCC are lacking, but knowledge can be inferred from small sample studies in HCC utilizing multiregional or longitudinal sampling, including single-cell analysis, and from other tumour entities.

  • Potential drivers of tumour evolution are divided into intrinsic factors (that is, endogenous causes of DNA damage within the evolving tumour cell, such as genomic instability) and extrinsic factors from within the tumour microenvironment, such as immune cells (immunoediting of the tumour) and cancer-associated fibroblasts (remodelling).

  • Clonal tumour composition changes over time might be treatment-induced, and tumour evolution has wide clinical implications. For example, higher intratumoural heterogeneity is correlated with worse clinical outcomes.

  • For the implementation of personalized medicine and to truly understand the clinical effect of tumour evolution in HCC, noninvasive tracing of tumour evolution over time will be of fundamental importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Models of tumour evolution showing the progression of intratumoural heterogeneity over time.
Fig. 2: Hepatocarcinogenesis in cirrhotic and noncirrhotic (adenoma–carcinoma sequence) livers.
Fig. 3: Histological intratumoural heterogeneity in a small hepatocellular carcinoma nodule affecting cell differentiation and immune infiltrate.
Fig. 4: Intrinsic and extrinsic factors that drive tumour evolution.

Similar content being viewed by others

References

  1. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. CDC, National Center for Health Statistics. Trends in liver cancer mortality among adults aged 25 and over in the United States, 2000–2016. CDC, https://www.cdc.gov/nchs/products/databriefs/db314.htm.

  3. Zheng, R. et al. Liver cancer incidence and mortality in China: temporal trends and projections to 2030. Chin. J. Cancer Res. 30, 571–579 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nault, J.-C. & Villanueva, A. Intratumor molecular and phenotypic diversity in hepatocellular carcinoma. Clin. Cancer Res. 21, 1786–1788 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Villanueva, A. et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 140, 1501–1512.e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Torrecilla, S. et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J. Hepatol. 67, 1222–1231 (2017).

    Article  PubMed  Google Scholar 

  8. Kenmochi, K., Sugihara, S. & Kojiro, M. Relationship of histologic grade of hepatocellular carcinoma (HCC) to tumor size, and demonstration of tumor cells of multiple different grades in single small HCC. Liver 7, 18–26 (2008).

    Article  Google Scholar 

  9. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Xue, R. et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology 150, 998–1008 (2016).

    Article  PubMed  Google Scholar 

  11. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ling, S. et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc. Natl. Acad. Sci. USA. E6496–E6505 (2015).

  15. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zucman-Rossi, J., Villanueva, A., Nault, J.-C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239.e4 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Iavarone, M. et al. Contrast enhanced CT-scan to diagnose intrahepatic cholangiocarcinoma in patients with cirrhosis. J. Hepatol. 58, 1188–1193 (2013).

    Article  PubMed  Google Scholar 

  19. Di Tommaso, L. et al. Advanced precancerous lesions in the liver. Best Pract. Res. Clin. Gastroenterol. 27, 269–284 (2013).

    Article  PubMed  Google Scholar 

  20. Nault, J. C. et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 60, 1983–1992 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Nault, J.-C., Ningarhari, M., Rebouissou, S. & Zucman-Rossi, J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 544–558 (2019).

    Article  PubMed  Google Scholar 

  22. Farazi, P. A. et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res. 63, 5021–5027 (2003).

    CAS  PubMed  Google Scholar 

  23. Günes, C. & Rudolph, K. L. The role of telomeres in stem cells and cancer. Cell 152, 390–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Um, T.-H. et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J. Hepatol. 54, 939–947 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Villanueva, A. et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 61, 1945–1956 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Nault, J.-C., Bioulac-Sage, P. & Zucman-Rossi, J. Hepatocellular benign tumors — from molecular classification to personalized clinical care. Gastroenterology 144, 888–902 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Nault, J.-C., Paradis, V., Cherqui, D., Vilgrain, V. & Zucman-Rossi, J. Molecular classification of hepatocellular adenoma in clinical practice. J. Hepatol. 67, 1074–1083 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Nault, J.-C. et al. Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation. Gastroenterology 152, 880–894.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Pilati, C. et al. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell 25, 428–441 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bioulac-Sage, P., Sempoux, C. & Balabaud, C. Hepatocellular adenomas: morphology and genomics. Gastroenterol. Clin. North Am. 46, 253–272 (2017).

    Article  PubMed  Google Scholar 

  32. Rebouissou, S. et al. Genotype-phenotype correlation of CTNNB1 mutations reveals different β-catenin activity associated with liver tumor progression. Hepatology 64, 2047–2061 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Y., Wong, P. P., Sjeklocha, L., Steer, C. J. & Sahin, M. B. Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology 55, 563–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seehawer, M. et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 562, 69–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sia, D., Villanueva, A., Friedman, S. L. & Llovet, J. M. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152, 745–761 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Castelli, G., Pelosi, E. & Testa, U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers 9, E127 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, J.-S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Brunt, E. et al. cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentiation. Hepatology 68, 113–126 (2018).

    Article  PubMed  Google Scholar 

  40. Moeini, A. et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J. Hepatol. 66, 952–961 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Jeon, J. et al. Comparing clonality between components of combined hepatocellular carcinoma and cholangiocarcinoma by targeted sequencing. Cancer Genomics Proteom. 15, 291–298 (2018).

    Article  CAS  Google Scholar 

  42. Stavraka, C., Rush, H. & Ross, P. Combined hepatocellular cholangiocarcinoma (cHCC-CC): an update of genetics, molecular biology, and therapeutic interventions. J. Hepatocell. Carcinoma 6, 11–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Xue, R. et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Cancer Cell 35, 932–947.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, A. et al. Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat. Commun. 9, 894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fujimoto, A. et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat. Commun. 6, 6120 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Cazals-Hatem, D. et al. Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. J. Hepatol. 41, 292–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Joseph, N. M. et al. Genomic profiling of combined hepatocellular–cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J. Pathol. 248, 164–178 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Z.-H. et al. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2360–2368 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. He, J. et al. Block of NF-kB signaling accelerates MYC-driven hepatocellular carcinogenesis and modifies the tumor phenotype towards combined hepatocellular cholangiocarcinoma. Cancer Lett. 458, 113–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Mishra, L. et al. Liver stem cells and hepatocellular carcinoma. Hepatology 49, 318–329 (2009).

    Article  PubMed  Google Scholar 

  51. Zheng, H. et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68, 127–140 (2018).

    Article  PubMed  Google Scholar 

  52. Hirata, A., Hatano, Y., Niwa, M., Hara, A. & Tomita, H. Heterogeneity in colorectal cancer stem cells. Cancer Prev. Res. 12, 413–420 (2019).

    Article  Google Scholar 

  53. Hatina, J. et al. Ovarian cancer stem cell heterogeneity. Adv. Exp. Med. Biol. 1139, 201–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Friemel, J. et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin. Cancer Res. 21, 1951–1961 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Zhai, W. et al. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat. Commun. 8, 4565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, D.-C. et al. Genomic and epigenomic heterogeneity of hepatocellular carcinoma. Cancer Res. 77, 2255–2265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marquardt, J. U., Andersen, J. B. & Thorgeirsson, S. S. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer 15, 653–667 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Duan, M. et al. Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing. Cell Res. 28, 359–373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi, J.-Y. et al. Inferring the progression of multifocal liver cancer from spatial and temporal genomic heterogeneity. Oncotarget 7, 2867–2877 (2016).

    PubMed  Google Scholar 

  63. Furuta, M. et al. Whole genome sequencing discriminates hepatocellular carcinoma with intrahepatic metastasis from multi-centric tumors. J. Hepatol. 66, 363–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta 1786, 32–40 (2008).

    CAS  PubMed  Google Scholar 

  67. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bakhoum, S. F. & Landau, D. A. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb. Perspect. Med. 7, a029611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Laughney, A. M., Elizalde, S., Genovese, G. & Bakhoum, S. F. Dynamics of tumor heterogeneity derived from clonal karyotypic evolution. Cell Rep. 12, 809–820 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raynaud, F., Mina, M., Tavernari, D. & Ciriello, G. Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability. PLoS Genet. 14, e1007669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Z. et al. Overexpression of APOBEC3F in tumor tissues is potentially predictive for poor recurrence-free survival from HBV-related hepatocellular carcinoma. Discov. Med. 20, 349–356 (2015).

    PubMed  Google Scholar 

  76. Yang, Z. et al. Correlation of APOBEC3 in tumor tissues with clinico-pathological features and survival from hepatocellular carcinoma after curative hepatectomy. Int. J. Clin. Exp. Med. 8, 7762–7769 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, R. et al. Association of human APOBEC3 cytidine deaminases with the generation of hepatitis virus B x antigen mutants and hepatocellular carcinoma. Hepatology 46, 1810–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, X. S. & Mardis, E. R. Applications of immunogenomics to cancer. Cell 168, 600–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Milo, I. et al. The immune system profoundly restricts intratumor genetic heterogeneity. Sci. Immunol. 3, eaat1435 (2018).

    Article  PubMed  Google Scholar 

  81. Wolf, Y. et al. UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell 179, 219–235.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gil Del Alcazar, C. R. et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 7, 1098–1115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Janiszewska, M. et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat. Cell Biol. 21, 879–888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769.e22 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Angelova, M. et al. Evolution of metastases in space and time under immune selection. Cell 175, 751–765.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Nishida, N. & Kudo, M. Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology 92, 40–49 (2017).

    Article  PubMed  Google Scholar 

  87. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Shi, L. et al. Multi-omics study revealing the complexity and spatial heterogeneity of tumor-infiltrating lymphocytes in primary liver carcinoma. Oncotarget 8, 34844–34857 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pinyol, R., Sia, D. & Llovet, J. M. Immune exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies in HCC. Clin. Cancer Res. 25, 2021–2023 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Kubo, N., Araki, K., Kuwano, H. & Shirabe, K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J. Gastroenterol. 22, 6841–6850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jia, C.-C. et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 8, e63243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Song, T., Dou, C., Jia, Y., Tu, K. & Zheng, X. TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 6, 12061–12079 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Shirabe, K. et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg. Today 42, 1–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Gorelik, E., Wiltrout, R. H., Brunda, M. J., Holden, H. T. & Herberman, R. B. Augmentation of metastasis formation by thioglycollate-elicited macrophages. Int. J. Cancer 29, 575–581 (1982).

    Article  CAS  PubMed  Google Scholar 

  99. Capece, D. et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res. Int. 2013, 187204 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morris, L. G. T. et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7, 10051–10063 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Yang, F. et al. Intratumor heterogeneity predicts metastasis of triple-negative breast cancer. Carcinogenesis 38, 900–909 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Reuben, A. et al. TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov. 7, 1088–1097 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. FDA. FDA approves first cancer treatment for any solid tumor with a specific genetic feature. FDA, https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature

  112. Salem, M. E. et al. Landscape of tumor mutation load, mismatch repair deficiency, and PD-L1 expression in a large patient cohort of gastrointestinal cancers. Mol. Cancer Res. 16, 805–812 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Harding, J. J. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25, 2116–2126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhu, A. X. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 282–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Hu, G. et al. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability. Oncol. Lett. 16, 3439–3446 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Firtina Karagonlar, Z., Koc, D., Iscan, E., Erdal, E. & Atabey, N. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 107, 407–416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tovar, V. et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut 66, 530–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Amirouchene-Angelozzi, N., Swanton, C. & Bardelli, A. Tumor evolution as a therapeutic target. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-17-0343 (2017).

  125. Marrero, J. A. et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68, 723–750 (2018).

    Article  PubMed  Google Scholar 

  126. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Article  Google Scholar 

  127. Dazert, E. et al. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc. Natl. Acad. Sci. USA 113, 1381–1386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Labgaa, I. & Villanueva, A. Liquid biopsy in liver cancer. Discov. Med. 19, 263–273 (2015).

    PubMed  Google Scholar 

  129. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, D.-S. et al. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer. Gut 68, 1152–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Bernard, V. et al. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology 156, 108–118.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Khan, K. H. et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov. 8, 1270–1285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 36, 1631–1641 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Labgaa, I. et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene 37, 3740–3752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Huang, A. et al. Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity. J. Cancer 7, 1907–1914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cai, Z.-X. et al. Circulating tumor DNA profiling reveals clonal evolution and real-time disease progression in advanced hepatocellular carcinoma. Int. J. Cancer 141, 977–985 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Xu, R.-H. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16, 1155–1161 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Kisiel, J. B. et al. Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation. Hepatology 69, 1180–1192 (2019).

    CAS  PubMed  Google Scholar 

  140. Jiang, P. et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 115, E10925–E10933 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ogle, L. F. et al. Imagestream detection and characterisation of circulating tumour cells — a liquid biopsy for hepatocellular carcinoma? J. Hepatol. 65, 305–313 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. D’Avola, D. et al. High-density single cell mRNA sequencing to characterize circulating tumor cells in hepatocellular carcinoma. Sci. Rep. 8, 11570 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kalinich, M. et al. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 114, 1123–1128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Felden, J. von et al. Circulating tumor cells as liquid biomarker for high HCC recurrence risk after curative liver resection. Oncotarget 8, 89978–89987 (2017).

    Google Scholar 

  145. Xue, F. et al. Application of a novel liquid biopsy in patients with hepatocellular carcinoma undergoing liver transplantation. Oncol. Lett. 15, 5481–5488 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Gatenby, R. A., Grove, O. & Gillies, R. J. Quantitative imaging in cancer evolution and ecology. Radiology 269, 8–15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hectors, S. J. et al. Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci. Rep. 7, 2452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Segal, E. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 25, 675–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Xia, W. et al. Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data — a preliminary study. Phys. Med. Biol. 63, 035044 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Bensch, F. et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 24, 1852–1858 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Johnson, P. J. et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach — the ALBI grade. J. Clin. Oncol. 33, 550–558 (2015).

    Article  PubMed  Google Scholar 

  152. Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAFV600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Glickman, M. S. & Sawyers, C. L. Converting cancer therapies into cures: lessons from infectious diseases. Cell 148, 1089–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vermehren, J., Park, J. S., Jacobson, I. M. & Zeuzem, S. Challenges and perspectives of direct antivirals for the treatment of hepatitis C virus infection. J. Hepatol. 69, 1178–1187 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Koeberle, D. et al. Sorafenib with or without everolimus in patients with advanced hepatocellular carcinoma (HCC): a randomized multicenter, multinational phase II trial (SAKK 77/08 and SASL 29). Ann. Oncol. 27, 856–861 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Martins-Filho, S. N. et al. A phenotypical map of disseminated hepatocellular carcinoma suggests clonal constraints in metastatic sites. Histopathology 74, 718–730 (2019).

    Article  PubMed  Google Scholar 

  160. Buczak, K. et al. Spatial tissue proteomics quantifies inter- and intratumor heterogeneity in hepatocellular carcinoma (HCC). Mol. Cell. Proteom. 17, 810–825 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of A.V. is supported by the U.S. Department of Defense (CA150272P3). The work of J.v.F. is supported by Deutsche Forschungsgemeinschaft (FE1746/1-1). The work of T.G.-L is supported by Asociación Española para el Estudio del Hígado (AEEH).

Author information

Authors and Affiliations

Authors

Contributions

A.V. made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission. A.J.C., J.v.F., S.S. and T.G.-L. researched data for the article, made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Augusto Villanueva.

Ethics declarations

Competing interests

A.V. has received consulting fees from Guidepoint and Fujifilm, advisory board fees from Exact Sciences, Nucleix and NGM, and lecture fees from Exelixis. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, A.J., von Felden, J., Garcia-Lezana, T. et al. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 17, 139–152 (2020). https://doi.org/10.1038/s41575-019-0229-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0229-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer