Skip to main content

Advertisement

Log in

Facile synthesis of Li2ZrO3-modified LiNi0.5Mn0.5O2 cathode material from a mechanical milling route for lithium-ion batteries

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Li2ZrO3-modified LiNi0.5Mn0.5O2 materials with improved electrochemical performance were directly synthesized by a simple mechanical milling route with ZrO2, Li2CO3 and Ni0.5Mn0.5(OH)2 precursors and a high temperature calcination in air atmosphere. The influences of ZrO2 contents on the microstructures and electrochemical properties of LiNi0.5Mn0.5O2 electrode materials were investigated through X-Ray diffraction, scanning electron microscope, energy dispersive spectroscopy and electrochemical tests. The results showed that ZrO2 can be completely converted into Li2ZrO3 in the form of a coating layer covering the surface of LiNi0.5Mn0.5O2 after a heat treatment process. Li2ZrO3 coating can be formed and dispersed homogenously on the surface of 1 mol% Li2ZrO3-modified LiNi0.5Mn0.5O2 materials. The electrochemical tests confirmed 1 mol% Li2ZrO3-modified LiNi0.5Mn0.5O2 materials exhibited the best discharge capacity of 158.3 mAh g−1 after 100 cycles between 2.75 and 4.35 V at 0.2 C, with an excellent capacity retention of 97.2% and higher discharge capacity at −20 °C than that of the pristine LiNi0.5Mn0.5O2. The enhanced cycling stability and low temperature performance may be attributed to the remarkable synergistic effects of Li2ZrO3 protective layer and its homogeneous distribution on LiNi0.5Mn0.5O2 surface with low Li/Ni cation mixing, high electric conductivity and good structure stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)

    CAS  Google Scholar 

  2. Z.Q. Yan, W.L. Yao, L. Hu, D.D. Liu, C.D. Wang, C.S. Lee, Nanoscale 7, 5563–5577 (2015)

    CAS  Google Scholar 

  3. Y. Yang, S. Li, Q. Zhang, Y. Zhang, S. Xu, Ind. Eng. Chem. Res. 56, 175–182 (2017)

    CAS  Google Scholar 

  4. T.E. Quine, M.J. Duncan, A.R. Armstrong, A.D. Robertson, P.G. Bruce, J. Mater. Chem. 10, 2838–2841 (2007)

    Google Scholar 

  5. Y. Hinuma, Y.S. Meng, K. Kang, G. Ceder, Chem. Mater. 19, 1790–1800 (2007)

    CAS  Google Scholar 

  6. X.L. Meng, S.M. Dou, W.L. Wang, J. Power Sources 184, 489–493 (2008)

    CAS  Google Scholar 

  7. M. Yoncheva, R. Stoyanova, E. Zhecheva, R. Alcantara, J.L. Tirado, J. Alloys Compd. 475, 96–101 (2009)

    CAS  Google Scholar 

  8. K. Sakamoto, M. Hirayama, H. Konishi, N. Sonoyama, N. Dupre, D. Guyomard, K. Tamura, J. Mizuki, R. Kanno, Phys. Chem. Chem. Phys. 12, 3815–3823 (2010)

    CAS  Google Scholar 

  9. Y.M. Liu, B.L. Chen, F. Cao, X. Zhao, J. Yuan, J. Mater. Chem. 21, 10437–10441 (2011)

    CAS  Google Scholar 

  10. F. Li, G. Yang, G. Jia, X. Shangguan, Q. Zhuge, B. Bai, J. Appl. Electrochem. 47, 1189–1201 (2017)

    CAS  Google Scholar 

  11. Y. Ding, D. Mu, B. Wu, R. Wang, Z. Zhao, F. Wu, Appl. Energy 195, 586–599 (2017)

    CAS  Google Scholar 

  12. H. Kobayashi, H. Sakaebe, H. Kageyama, K. Tatsumi, Y. Arachi, J. Mater. Chem. 13, 590–595 (2003)

    CAS  Google Scholar 

  13. Z. Wang, E. Liu, L. Guo, C. Shi, C. He, J. Li, N. Zhao, Surf. Coat. Technol. 235, 570–576 (2013)

    CAS  Google Scholar 

  14. J.Z. Kong, C. Ren, G.A. Tai, X. Zhang, A.D. Li, D. Wu, H. Li, F. Zhou, J. Power Sources 266, 433–439 (2014)

    CAS  Google Scholar 

  15. J. Cho, J.K. Yong, B. Park, Chem. Mater. 32, 3788–3791 (2000)

    Google Scholar 

  16. W. Feng, W. Meng, Y. Su, C. Shi, B. Xu, J. Power Sources 191, 628–632 (2009)

    Google Scholar 

  17. H. Liu, G.X. Wang, D. Wexler, J.Z. Wang, H.K. Liu, Electrochem. Commun. 10, 165–169 (2008)

    Google Scholar 

  18. J.Q. Zhao, Y. Wang, Nano Energy 2, 882–889 (2013)

    CAS  Google Scholar 

  19. H. Han, F. Qiu, Z. Liu, X. Han, Ceram. Int. 41, 8779–8784 (2015)

    CAS  Google Scholar 

  20. E. Jung, Y.J. Park, J. Electroceram. 29, 23–28 (2012)

    CAS  Google Scholar 

  21. B.J. Hwang, S.K. Hu, C.H. Chen, C.Y. Chen, H.S. Sheu, J. Power Sources 174, 61–765 (2007)

    Google Scholar 

  22. S.K. Hu, G.H. Cheng, M.Y. Cheng, B.J. Hwang, R. Santhanam, J. Power Sources 188, 564–569 (2009)

    CAS  Google Scholar 

  23. J.Z. Kong, S.S. Wang, G.A. Tai, L. Zhu, L.G. Wang, H.F. Zhai, D. Wu, A.D. Li, H. Li, J. Alloys Compd. 657, 593–600 (2016)

    CAS  Google Scholar 

  24. L. Li, Z. Chen, Q. Zhang, M. Xu, X. Zhou, H. Zhu, K. Zhang, J. Mater. Chem. A 3, 894–904 (2015)

    CAS  Google Scholar 

  25. W. Wang, Z. Yin, Z. Wang, X. Li, H. Guo, D. Wang, J. Alloys Compd. 646, 454–460 (2015)

    CAS  Google Scholar 

  26. J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, J. Zhao, Phys. Chem. Chem. Phys. 17, 32033–32043 (2015)

    CAS  Google Scholar 

  27. W. Wang, Z. Yin, J. Wang, Z. Wang, X. Li, H. Guo, J. Alloys Compd. 651, 737–743 (2015)

    CAS  Google Scholar 

  28. S.B. Lim, H. Lee, Y.J. Park, J. Electroceram. 37, 92–97 (2016)

    CAS  Google Scholar 

  29. C. Wang, L. Chen, H. Zhang, Y. Yang, F. Wang, F. Yin, G. Yang, Electrochim. Acta 119, 236–242 (2014)

    CAS  Google Scholar 

  30. D. Wang, X. Li, Z. Wang, H. Guo, Z. Huang, L. Kong, J. Ru, J. Alloys Compd. 647, 612–619 (2015)

    CAS  Google Scholar 

  31. Y. Xu, Y. Liu, Z. Lu, H. Wang, D. Sun, G. Yang, Appl. Surf. Sci. 361, 150–156 (2016)

    CAS  Google Scholar 

  32. S. Zhong, P. Chen, W. Yao, ECS Electrochem. Lett. 4, A45–A48 (2015)

    CAS  Google Scholar 

  33. S. Zhong, M. Lai, W. Yao, Z. Li, Electrochim. Acta 212, 343–351 (2016)

    CAS  Google Scholar 

  34. H.Q. Liu, Y.M. Hu, Y.B. Li, H.S. Gu, Mater. Chem. Phys. 138, 440–443 (2013)

    CAS  Google Scholar 

  35. H. Gwon, S.W. Kim, Y.U. Park, J. Hong, G. Ceder, S. Jeon, K. Kang, Inorg. Chem. 53, 8083–8087 (2014)

    CAS  Google Scholar 

  36. T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140, 1862–1870 (1993)

    CAS  Google Scholar 

  37. A.M.A. Hashem, A.E. Abdel-Ghany, A.E. Eid, J. Trottier, K. Zaghib, J. Power Sources 196, 8632–8637 (2011)

    CAS  Google Scholar 

  38. X. Zhang, A. Mauger, L. Qi, H. Groult, L. Perrigaud, Electrochim. Acta 55, 6440–6449 (2010)

    CAS  Google Scholar 

  39. S. Jouanneau, K.W. Eberman, L.J. Krause, J.R. Dahn, J. Electrochem. Soc. 150, A1637–A1642 (2003)

    CAS  Google Scholar 

  40. S.N. Lim, W. Ahn, S.H. Yeon, S.B. Park, Electrochim. Acta 136, 1–9 (2014)

    CAS  Google Scholar 

  41. F. Nobili, S. Dsoke, M. Minicucci, F. Croce, R. Marassi, J. Phys. Chem. B 110, 11310–11313 (2006)

    CAS  Google Scholar 

  42. X.Y. Qiu, Q.C. Zhuang, Q.Q. Zhang, R. Cao, Y.H. Qiang, P.Z. Ying, S.G. Sun, J. Electroanal. Chem. 687, 35–44 (2012)

    CAS  Google Scholar 

  43. W. Yao, Y. Liu, Q. Dai, D. Li, Y. Yu, Q. Jing, J. Chin. Chem. Soc. 64, 539–546 (2017)

    CAS  Google Scholar 

  44. C.H. Liang, L.B. Liu, Z. Jia, C. Dai, Y. Xiong, Electrochim. Acta 186, 413–419 (2015)

    CAS  Google Scholar 

  45. W. Yao, Q. Dai, Y. Liu, Q. Zhang, S. Zhong, Z. Yan, ChemElectroChem 4, 1236–1242 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this work by National Natural Science Fund of China (No.51372104), Jiangxi Province Science and Technology Plan Project (No.20141BBE50019), Foundation of Jiangxi Educational Committee (No. GJJ160601), Finance and Education Plan of Ganzhou City (No.197[2017]) and Doctoral scientific research foundation of Jiangxi University of Science and Technology (No. jxxjbs16025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwen Zhong.

Electronic supplementary material

Fig. S1

SEM image and the corresponding element mapping of O, Ni, Mn, Zr and EDS images of 1-LZO@LNMO material. (JPG 443 kb)

Fig. S2

SEM image and the corresponding element mapping of Zr for LZO-modified LiNi0.5Mn0.5O2 materials. (JPG 365 kb)

Fig. S3

Rate capability of LZO-modified LiNi0.5Mn0.5O2 materials from 0.2C to 5C between 2.75 and 4.35 V. (JPG 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Zhang, H., Zhong, S. et al. Facile synthesis of Li2ZrO3-modified LiNi0.5Mn0.5O2 cathode material from a mechanical milling route for lithium-ion batteries. J Electroceram 43, 84–91 (2019). https://doi.org/10.1007/s10832-018-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0158-6

Keywords

Navigation