Synlett 2020; 31(01): 87-91
DOI: 10.1055/s-0039-1691508
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Oxidative Allylic Alkylation of N-Hydroxy­imides

Narasimham Ayyagari
,
Sunil Kumar Sunnam
,
Milind M. Ahire
,
Minxi Yang
,
Kevin Ngo
,
Department of Pharmaceutical Sciences, School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Ste. 919, Philadelphia, PA 19107, USA   Email: jitendra.belani@jefferson.edu
› Author Affiliations
Further Information

Publication History

Received: 13 September 2019

Accepted after revision: 13 November 2019

Publication Date:
29 November 2019 (online)


The authors contributed equally to the project

Abstract

A palladium-catalyzed oxidative C–H allylic alkylation of N-hydroxyimides has been developed. This transformation provided valuable N-allyloxypyrrolidinediones in moderate to excellent yields using operationally simple, ligand free, and mild reaction conditions. The reaction tolerated broad and variable substituents on allylarenes and N-hydroxyimides.

Supporting Information

 
  • References and Notes


    • For representative reviews, see:
    • 1a Trost B. Tetrahedron 2015; 71: 5708
    • 1b Fernandes RA, Nallasivam JL. Org. Biomol. Chem. 2019; 17: 8647

      For representative reviews, see:
    • 2a Wang R, Luan Y, Ye M. Chin. J. Chem. 2019; 37: 720
    • 2b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 2c Liu G, Wu Y. Top. Curr. Chem. 2010; 292: 195
    • 3a Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 3b Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970

      Representative examples for the construction of C–C bond:
    • 4a Franzén J, Bäckvall J.-E. J. Am. Chem. Soc. 2003; 125: 6056
    • 4b Piera J, Närhi K, Bäckvall J.-E. Angew. Chem. Int. Ed. 2006; 45: 6914
    • 4c Persson AK. Å, Bäckvall J.-E. Angew. Chem. Int. Ed. 2010; 49: 4624
    • 4d Chen H, Cai C, Liu X, Li X, Jiang H. Chem. Commun. 2011; 47: 12224
    • 4e Wang P, Lin H, Zhou X, Gong L. Org. Lett. 2014; 16: 3332
    • 4f Li C, Li M, Zhong W, Jin Y, Li J, Wu W, Jiang H. Org. Lett. 2019; 21: 872
    • 4g Lin S, Song C.-X, Cai G.-X, Wang W.-H, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
    • 4h Young AJ, White MC. J. Am. Chem. Soc. 2008; 130: 14090
    • 4i Young AJ, White MC. Angew. Chem. Int. Ed. 2011; 50: 6824
    • 4j Howell JM, Liu W, Young AJ, White MC. J. Am. Chem. Soc. 2014; 136: 5750

      Representative examples for the construction of C–N bond:
    • 5a Beccalli EM, Broggini G, Paladino G, Penoni A, Zoni C. J. Org. Chem. 2004; 69: 5627
    • 5b Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
    • 5c Liu G, Yin G, Wu L. Angew. Chem. Int. Ed. 2008; 47: 4733
    • 5d Rice GT, White MC. J. Am. Chem. Soc. 2009; 131: 11707
    • 5e Nahra F, Liron F, Prestat G, Mealli C, Messaoudi A, Poli G. Chem. Eur. J. 2009; 15: 11078
    • 5f Wu L, Qiu S, Liu G. Org. Lett. 2009; 11: 2707
    • 5g Pattillo CC, Strambeanu II, Calleja P, Vermeulen NA, Mizuno T, White MC. J. Am. Chem. Soc. 2016; 138: 1265

      Representative examples for the construction of C–O bond:
    • 6a Fraunhoffer KJ, Prabagaran N, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
    • 6b Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 6c Ammann SE, Rice GT, White MC. J. Am. Chem. Soc. 2014; 136: 10834
    • 6d Malik M, Witkowski G, Jarosz S. Org. Lett. 2014; 16: 3816
    • 6e Kondo H, Yu F, Yamaguchi J, Liu G, Itami K. Org. Lett. 2014; 16: 4212
    • 6f Ayyagari N, Belani JD. Synlett 2014; 25: 2350
    • 6g Litman ZC, Sharma A, Hartwig JF. ACS Catal. 2017; 7: 1998

      For use in peptide synthesis, see:
    • 7a El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 7b Anderson GW, Zimmerman JE, Callahan FM. J. Am. Chem. Soc. 1964; 86: 1839
    • 7c Zimmerman JE, Anderson GW. J. Am. Chem. Soc. 1967; 89: 7151

      For radical reactions, see:
    • 8a Recupero F, Punta C. Chem. Rev. 2007; 107: 3800

    • For electrocatalylic reactions, see:
    • 8b Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
    • 9a Klykov O, Weller MG. Anal. Methods 2015; 7: 6443
    • 9b Ames DE, Grey TF. J. Chem. Soc. 1955; 3518
  • 10 Miyabe H, Yoshida K, Yamauchi M, Takemoto Y. J. Org. Chem. 2005; 70: 2148
    • 11a Lv Y, Sun K, Wang T, Li G, Pu W, Chai N, Shen H, Wu Y. RSC Adv. 2015; 5: 72142
    • 11b Dian L, Wang S, Zhang-Negrerie D, Du Y. Adv. Synth. Catal. 2015; 357: 3836
    • 11c Lee JM, Park EJ, Cho SH, Chang S. J. Am. Chem. Soc. 2008; 130: 7824

      For representative examples, see:
    • 12a Joshi PN, Rai V. Chem. Commun. 2019; 55: 1100
    • 12b Fishman JM, Zwick DB, Kruger AG, Kiessling LL. Biomacromolecules 2019; 20: 1018

      For representative examples, see:
    • 13a Berger BJ. Antimicrob. Agents Chemother. 2000; 44: 2540
    • 13b Malachowski WP, Winters M, DuHadaway JB, Lewis-Ballester A, Badir S, Wai J, Rahman M, Sheikh E, LaLonde JM, Yeh SR, Prendergast GC, Muller AJ. Eur. J. Med. Chem. 2016; 108: 564
    • 13c Wencewicz TA, Yang B, Rudloff JR, Oliver AG, Miller MJ. J. Med. Chem. 2011; 54: 6843
    • 14a Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnurch M. Chem. Soc. Rev. 2018; 47: 6603
    • 14b Xue Y, Fan Z, Jiang X, Wu K, Wang M, Ding C, Yao Q, Zhang A. Eur. J. Org. Chem. 2014; 7481
    • 15a Campbell A, White PB, Guzei IA, Stahl SS. J. Am. Chem. Soc. 2010; 132: 15116
    • 15b Pilarski LT, Selander N, Böse D, Szabó KJ. Org. Lett. 2009; 11: 5518
    • 15c Archambeau A, Rovis T. Angew. Chem. Int. Ed. 2015; 54: 13337
    • 15d Ye Y, Schimler SD, Hanley PS, Sanford MS. J. Am. Chem. Soc. 2013; 135: 16292
  • 16 Cao Q, Dornan LM, Rogan L, Hughes NL, Muldoon MJ. Chem. Commun. 2014; 50: 4524
    • 17a Lin S, Song CX, Cai GX, Wang WH, Shi ZJ. J. Am. Chem. Soc. 2008; 130: 12901
    • 17b Efange SM, Michelson RH, Dutta AK, Parsons SM. J. Med. Chem. 1991; 34: 2638
    • 18a Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 18b McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756
  • 19 General Procedure for C–H Activation/C–O Bond Formation To a solution of aryl benzene 1 (0.1 mmol, 1 equiv) in acetonitrile (2 mL) were added N-hydroxyimide (2, 3.0 equiv), copper(II) acetate monohydrate (1.0 equiv), acetic acid (0.5 equiv), and Pd(OAc)2 (0.1 equiv) in the same order and heated at 75 °C. The reaction was conducted in a round-bottom flask equipped with a reflux condenser. After 24–28 h, the reaction mass was dried on a small mass of silica and was purified by flash chromatography using hexanes/EtOAc . (E)-1-[(3-(4-Methoxyphenyl)allyl)oxy]pyrrolidine-2,5-dione (3a) Prepared according to the general procedure. Purification by column chromatography (n-hexane/EtOAc, 4:1) gave 3a in 84% yield as a white solid (mp 98–100 °C). 1H NMR (400 MHz, CDCl3): δ = 7.34–7.30 (d, J = 8.6 Hz, 2 H), 6.87–6.84 (d, J = 8.7 Hz, 2 H), 6.60 (d, J = 15.9 Hz, 1 H), 6.25–6.18 (dt, J = 15.8, 7.3 Hz, 1 H), 4.77 (dd, J = 7.3, 1.0 Hz, 2 H), 3.80 (s, 3 H), 2.65 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 171.5, 160.0, 137.5, 128.4, 128.2, 119.2, 114.1, 77.7, 55.3, 25.4. HRMS: m/z calcd for C14H16NO4 [M + H+]: 261.1001; found: 261.1066.