Elsevier

Microbiological Research

Volume 232, February 2020, 126389
Microbiological Research

Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity

https://doi.org/10.1016/j.micres.2019.126389Get rights and content
Under an Elsevier user license
open archive

Abstract

This study describes the biocontrol potential of rhizobacteria against a range of fungal phytopathogens. Out of 227 bacteria isolated from the rhizosphere of maize, rice, wheat, potato, sunflower and soybean crops cultivated in different agro-ecological regions of Pakistan, 48 exhibited >60 % antifungal activity against Fusarium oxysporum, Fusarium moniliforme, Rhizoctonia solani, Colletotrichum gloeosporioides, Colletotrichum falcatum, Aspergillus niger, and Aspergillus flavus. The rhizobacteria inhibiting >65 % pathogen growth were selected for detailed molecular and in planta studies most of which were identified as Pseudomonas and Bacillus species based on 16S rRNA gene sequence analysis. Antifungal metabolites produced by these rhizobacteria analyzed through LCMS were identified as antibiotics (iturin, surfactins, fengycin, DAPG, Phenazine, etc.), cell wall degrading enzymes (protease, chitinase, and cellulase), plant growth promotion enzymes and hormones (indole-3-acetic acid, ACC-deaminase, phosphates, nitrogen fixation), N-acyl-homoserine lactones and siderophores. The growth room experiment validated the potential of these bacteria as biofertilizer and biopesticide agents. Of all, P. aeruginosa strain FB2 and B. subtilis strain RMB5 showed significantly higher potential as antagonistic plant-beneficial bacteria effective against a range of fungal phytopathogens. Both these bacteria can be used to develop a dual-purpose bacterial inoculum as biopesticide and biofertilizer. Rest of the antagonistic PGPR may be exploited for disease control in less-infested soils.

Keywords

Biocontrol
Plant growth-promoting rhizobacteria (PGPR)
Phytopathogenic fungi
Pseudomonas
Bacillus
Antibiotics

Cited by (0)