Synthesis 2020; 52(06): 861-872
DOI: 10.1055/s-0039-1690760
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Access to 2-Aryl-3-(arylmethyl)chromones

a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
b   Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan   Email: mychang@kmu.edu.tw
,
Kuan-Ting Chen
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
,
Yu-Lin Tsai
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
,
Han-Yu Chen
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
› Author Affiliations
The authors would like to thank the Ministry of Science and Technology, Taiwan for its financial support (MOST 106-2628-M-037-001-MY3).
Further Information

Publication History

Received: 22 October 2019

Accepted after revision: 14 November 2019

Publication Date:
28 November 2019 (online)


Abstract

Sodium hydroxide controlled intermolecular double aldol condensation of o-hydroxyacetophenones with 2 equivalents of aryl­aldehydes provides 2-aryl-3-(arylmethyl)chromones (a chimera of flavone and homoisoflavanone) in MeOH at 50 °C under mild conditions. The uses of various bases and solvents are investigated for one-pot facile and efficient transformation. A plausible mechanism is proposed.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Kosmider B, Osiecka R. Drug Dev. Res. 2004; 63: 200
    • 1b Teillet F, Boumendjel A, Boutonnat J, Ronot X. Med. Res. Rev. 2008; 28: 715
    • 1c Talhi O, Silva AM. S. Curr. Org. Chem. 2012; 16: 859
    • 1d Kumazawa Y, Takimoto H, Matsumoto T, Kawaguchi K. Curr. Pharm. Res. 2014; 20: 857
    • 1e Ibrahim MA, Ali TE, Alnamer YA, Gabr YA. ARKIVOC 2010; (i): 98
    • 1f Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
    • 1g Plaskon AS, Grygorenko OO, Ryabukhin SV. Tetrahedron 2012; 68: 2743
    • 1h Li N.-G, Shi Z.-H, Tang Y.-P, Ma H.-Y, Yang J.-P, Li B.-Q, Wang Z.-J, Song S.-L, Duan JA. J. Heterocycl. Chem. 2010; 47: 785
    • 1i Snatos CM. M, Silva AM. S. Eur. J. Org. Chem. 2017; 2017: 3115

      Selected recent examples on biological activities of flavones, see:
    • 2a Badavath VN, Nath C, Ganta NM, Ucar G, Sinha BN, Jayaprakash V. Chin. Chem. Lett. 2017; 28: 1528
    • 2b Charvin D, Pomel V, Ortiz M, Frauli M, Scheffler S, Steinberg E, Baron L, Deshons L, Rudigier R, Thiarc D, Morice C, Manteau B, Mayer S, Graham D, Giethlen B, Brugger N, Hédou G, Conquet F, Schann S. J. Med. Chem. 2017; 60: 8515

    • For a recent review, see:
    • 2c Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941

      Selected examples on biological activities of homoisoflavanones, see:
    • 3a Basavarajappa HD, Lee B, Lee H, Sulaiman RS, An H, Magaña C, Shadmand M, Vayl A, Rajashekhar G, Kim EY, Suh Y.-G, Lee K, Seo S.-Y, Corson TW. J. Med. Chem. 2015; 58: 5015
    • 3b Zhang H, Yang F, Qi J, Song X.-C, Hu Z.-F, Zhu D.-N, Yu B.-Y. J. Nat. Prod. 2010; 73: 548
  • 4 Shen C, Li W, Yin H, Spannenberg A, Skrydstrup T, Wu X.-F. Adv. Synth. Catal. 2016; A leading example on synthesis of flavones, see: 358: 46 ; and references cited therein

    • Selected examples on synthesis of homoisoflavanones and their derivatives, see:
    • 5a Hu H, Chen X, Sun K, Wang J, Liu Y, Liu H, Fan L, Yu B, Sun Y, Qu L, Zhao Y. Org. Lett. 2018; 20: 6157
    • 5b Lee B, Basavarajappa HD, Sulaiman RS, Fei X, Seo S.-Y, Corson TW. Org. Biomol. Chem. 2014; 12: 7673
    • 5c Poisson T, Gembus V, Dalla V, Oudeyer S, Levacher V. J. Org. Chem. 2010; 75: 7704
    • 5d Mrug GP, Myshko NV, Bondarenko SP, Sviripa VM, Frasinyuk MS. J. Org. Chem. 2019; 84: 7138

      For biological activities of 2-aryl-3-(imidazolylmethyl)chromones, see:
    • 6a Recanatini M, Bisi A, Cavalli A, Belluti F, Gobbi S, Rampa A, Valenti P, Palzer M, Palusczak A, Hartmann RW. J. Med. Chem. 2001; 44: 672
    • 6b Gobbi S, Cavalli A, Rampa A, Belluti F, Piazzi L, Paluszcak A, Hartmann RW, Recanatini M, Bisi A. J. Med. Chem. 2006; 49: 4777
    • 6c Gobbi S, Hu Q, Zimmer C, Engel M, Belluti F, Rampa A, Harmann RW, Bisi A. J. Med. Chem. 2016; 59: 2468

      For synthesis of 2-aryl-3-(arylmethyl)chromones, see:
    • 7a Raja GC. E, Ryu JY, Lee J, Lee S. Org. Lett. 2017; 19: 6606
    • 7b Zhao X, Zhou J, Lin S, Jin X, Liu RC-H. Org. Lett. 2017; 19: 976
    • 8a Chang M.-Y, Wu M.-H. Tetrahedron Lett. 2012; 53: 3173
    • 8b Chang M.-Y, Wu M.-H, Tai H.-Y. Org. Lett. 2012; 14: 3936
    • 8c Chang M.-Y, Wu M.-H. Tetrahedron 2012; 68: 9616
    • 9a Hofmann E, Webster J, Do T, Kline R, Snider L, Hauser Q, Higginbottom G, Campbell A, Ma L, Paula S. Bioorg. Med. Chem. 2016; 24: 578
    • 9b Stoyanov EV, Champavier Y, Simon A, Basly J.-P. Bioorg. Med. Chem. Lett. 2002; 12: 2685
    • 9c Guo G, Wan S, Si X, Jiang Q, Jia Y, Yang L, Zhou W. Org. Lett. 2017; 19: 5026
    • 10a Colombe JR, Bernhardt S, Stathakis C, Buchwald SL, Knochel P. Org. Lett. 2013; 15: 5754
    • 10b Štefko M, Slavětínská L, Klepetářová B, Hocek M. J. Org. Chem. 2010; 75: 442
    • 10c Wu GG, Wong YS, Poirier M. Org. Lett. 1999; 1: 745
  • 11 CCDC 1896972 (4a), 1896973 (4b), 1896974 (4c), 1896975 (4d), 1896977 (4g), 1896976 (4t), 1896978 (4z), and 1896979 (4ag) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 12 Wachter-Jurcsak N, Radu C, Redin K. Tetrahedron Lett. 1998; 39: 3903