Skip to main content
Log in

Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng P, Eastman J, Vande Pol S, Pimplikar SW (1998) PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc Natl Acad Sci USA 95:14745–14750

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Yang Y, Yeh S, Chang C (2004) ARA67/PAT1 functions as a repressor to suppress androgen receptor transactivation. Mol Cell Biol 24:1044–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Benboudjema L, Mulvey M, Gao Y, Pimplikar SW, Mohr I (2003) Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol 77:9192–9203

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, Nozawa S, Inazawa J, Imoto I (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9:1995–2004

    CAS  PubMed  Google Scholar 

  5. Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, Inazawa J (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883

    CAS  PubMed  Google Scholar 

  6. Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B, Actor B, Mincheva A, Pietsch T, Lichter P, Reifenberger G, Weber RG (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563

    CAS  PubMed  Google Scholar 

  7. Gao Y, Pimplikar SW (2001) The gamma -secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci USA 98:14979–14984

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S, Pimplikar SW, Chang C (2005) Androgen Receptor (AR) NH2-and CooH-Terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth. Mol Endocrinol 19:350–361

    CAS  PubMed  Google Scholar 

  9. Dilsizoglu Senol A, Tagliafierro L, Huguet L, Gorisse-Hussonnois L, Chasseigneaux S, Allinquant B (2015) PAT1 inversely regulates the surface amyloid precursor protein level in mouse primary neurons. BMC Neurosci 16:10

    PubMed  PubMed Central  Google Scholar 

  10. Kuan YH, Gruebl T, Soba P, Eggert S, Nesic I, Back S, Kirsch J, Beyreuther K, Kins S (2006) PAT1a modulates intracellular transport and processing of amyloid precursor protein (APP), APLP1, and APLP2. J Biol Chem 281:40114–40123

    CAS  PubMed  Google Scholar 

  11. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  12. Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131:215–221

    CAS  PubMed  Google Scholar 

  13. Haass C, Koo EH, Capell A, Teplow DB, Selkoe DJ (1995) Polarized sorting of beta-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J Cell Biol 128:537–547

    CAS  PubMed  Google Scholar 

  14. Lai A, Sisodia SS, Trowbridge IS (1995) Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J Biol Chem 270:3565–3573

    CAS  PubMed  Google Scholar 

  15. McClelland A, Kükn LC, Ruddle FH (1984) The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 30:267–274

    Google Scholar 

  16. Briand S, Facchinetti P, Clamagirand C, Madeira A, Pommet JM, Pimplikar SW, Allinquant B (2011) PAT1 induces cell death signal and SET mislocalization into the cytoplasm by increasing APP/APLP2 at the cell surface. Neurobiol Aging 32:1099–1113

    CAS  PubMed  Google Scholar 

  17. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6:e16301

    PubMed  PubMed Central  Google Scholar 

  18. Bertrand E, Brouillet E, Caillé I, Bouillot C, Cole GM, Prochiantz A, Allinquant B (2001) A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo. Mol Cell Neurosci 18:503–511

    CAS  PubMed  Google Scholar 

  19. Madeira A, Pommet JM, Prochiantz A, Allinquant B (2005) SET protein (TAF1beta, I2PP2A) is involved in neuronal apoptosis induced by an amyloid precursor protein cytoplasmic subdomain. Faseb J 19:1905–1907

    CAS  PubMed  Google Scholar 

  20. Serra J (1982) Image analysis and mathematical morphology, vol 1. Academic Press, London, pp 1–610

    Google Scholar 

  21. Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH (1995) EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270:13503–13511

    CAS  PubMed  Google Scholar 

  22. Stenmark H, Aasland R, Toh BH, d’Arrigo A (1996) Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271:24048–24054

    CAS  PubMed  Google Scholar 

  23. Simonsen A, Lippé R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–498

    CAS  PubMed  Google Scholar 

  24. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    CAS  PubMed  Google Scholar 

  25. Vandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6:a022616. https://doi.org/10.1101/cshperspect.a022616

    Article  Google Scholar 

  26. Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124:997–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Leonard D, Hayakawa A, Lawe D, Lambright D, Belive KD, Stanley C, Lifshitz LM, Fogarty KE, Corvera S (2008) Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J Cell Sci 121:3445–3458

    CAS  PubMed  Google Scholar 

  29. Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D (2001) Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104:119–130

    CAS  PubMed  Google Scholar 

  30. Compagnone NA, Zhang P, Vigne JL, Mellon SH (2000) Novel role for the nuclear phosphoprotein SET in transcriptional activation of P450c17 and initiation of neurosteroidogenesis. Mol Endocrinol 14:875–888

    CAS  PubMed  Google Scholar 

  31. Li M, Makkinje A, Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271:11059–11062

    CAS  PubMed  Google Scholar 

  32. Facchinetti P, Dorard E, Contremoulins V, Gaillard MC, Deglon N, Sazdovitch V, Guihenneuc-Jouyaux C, Brouillet E, Duyckaerts C, Allinquant B (2014) SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiol Aging 35:958–968

    CAS  PubMed  Google Scholar 

  33. Mayle KM, Le AM, Kamei DT (2012) The intracellular trafficking pathway of transferrin. Biochem Biophys Acta 1820:264–281

    CAS  PubMed  Google Scholar 

  34. Stenmark H, Vitale G, Ullrich O, Zerial M (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83:423–432

    CAS  PubMed  Google Scholar 

  35. Vitale G, Rybin V, Christoforidis S, Thornqvist P, McCaffrey M, Stenmark H, Zerial M (1998) Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J 17:1941–1951

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pagano A, Crottet P, Prescianotto-Baschong C, Spies M (2004) In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5. Mol Biol Cell 15:4990–5000

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grady EF, Gamp PD, Jones E, Baluk P, McDonald DM, Payan DG, Bunnett NW (1996) Endocytosis and recycling of neurokinin 1 receptors in enteric neurons. Neuroscience 79:1239–1254

    Google Scholar 

  38. Shen A, Nieves-Citron M, Deng Y, Shi Q, Chowdhury D, Qi J, Hell JW, Navedo MF, Xiang YK (2018) Functionally distinct and selectively phosphorylated GPCR subpopulations co-exist in a single cell. Nat Commun 9:1050. https://doi.org/10.1038/s41467-018-03459-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu K, Lei R, Li Q, Wang XX, Wu Q, An P, Zhang J, Zhu M, Xu Z, Hong Y, Wang F, Shen Y, Li H, Li H (2016) Transferrin receptor controls AMPA receptor trafficking efficiency and synaptic plasticity. Sci Rep 6:21019

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, del Conte-Zerial P, Hengstler JG, Kalaidzikis Y, Koteliansky V, Zerial M (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485:465–470

    CAS  PubMed  Google Scholar 

  41. Kroenke CD, Ziemnicka-Kotula D, Xu J, Kotula L, Palmer AG 3rd (1997) Solution conformations of a peptide containing the cytoplasmic domain sequence of the beta amyloid precursor protein. Biochemistry 36:8145–8152

    CAS  PubMed  Google Scholar 

  42. Ayala-Grosso C, Ng G, Roy S, Robertson GS (2002) Caspase-cleaved amyloid precursor protein in Alzheimer’s disease. Brain Pathol 12:430–441

    CAS  PubMed  Google Scholar 

  43. Banwait S, Galvan V, Zhang J, Gorostiza OF, Ataie M, Huang W, Crippen D, Koo EH, Bredesen DE (2008) C-terminal cleavage of the amyloid-beta protein precursor at Asp664: a switch associated with Alzheimer’s disease. J Alzheimers Dis 13:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao M, Su J, Head E, Cotman CW (2003) Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 14:391–403

    CAS  PubMed  Google Scholar 

  45. Dorard E, Gorisse-Hussonnois L, Guihenneuc-Jouyaux C, Albac C, Potier MC, Allinquant B (2016) Increases of SET level and translocation are correlated with tau hyperphosphorylation at ser202/thr205 in CA1 of Ts65Dn mice. Neurobiol Aging 46:43–48

    CAS  PubMed  Google Scholar 

  46. Cataldo AM, Barnett JL, Pieroni C, Nixon RA (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci 17:6142–6151

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM, Jiang Y, Mullaney K, Neve RL, Gruenberg J, Nixon RA (2008) Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. Am J Pathol 173:370–384

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu W, Fang F, Ding J, Wu C (2018) Dysregulation of Rab5-mediated endocytic pathways in Alzheimer’s disease. Traffic 19:253–262

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cossec JC, Lavaur J, Berman DE, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Gratteau Y, OlivoMarin JC, de Chaumont F, Lecourtois M, Antonarakis SE, Veltman JA, Delabar JM, Duyckaerts C, di Paolo G, Potier MC (2012) Trisomy for synaptojanin1 in down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet 21:3156–3172

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, Jiang Y, Nixon RA (2016) Evidence that the rab5 effector APPL1 mediates APP-ßCTF-induced dysfunction of endosomes in down syndrome and Alzheimer’s disease. Mol Psychiatry 21:707–716

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sanjay W. Pimplikar for mab26 to PAT1 and Dr. Marino Zerial for Rabaptin-5 antibody and Dr. Christophe Lamaze for helpful discussions. This work was supported by Institut National de la Santé et de la Recherche Médicale, France and by Fondation Jérôme Lejeune, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Allinquant.

Ethics declarations

Conflict of interest

There are no actual or potential conflicts of interests between the authors and this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2019_3157_MOESM1_ESM.jpg

Fig. 1S PAT1 is also involved in mature neurons at 15 DIV. (a) Neurons at 15DIV were immunolabeled for PAT1 and EEA1 and for PAT1 and Rab5. Representative image is presented for both double immunolabelings. Enlarged inset is presented on the right. Scale bar: 10 µm; Scale bar of enlarged inset:5 µm. Pearson’s coefficient for soma and dendrites is presented for PAT1/EEA1 (30 cells analyzed) and for PAT1/Rab5 (30 cells analyzed). (b) Number of EEA1 vesicles per cell surface (µm2) are presented for soma and dendrites both in PAT1 siRNAs conditions and in control (Ctrl) in the absence of treatment (30 cells analyzed per condition). (c) Transferrin (Tf) uptake at 30 min in PAT1 siRNAs conditions and in control(Ctrl) in the absence of treatment is expressed in integrated density/cell (30 cells analyzed per condition). *p < 0.05; ***p < 0.001 (JPEG 1074 kb)

18_2019_3157_MOESM2_ESM.tif

Fig. 2S Colocalization of Transferrin uptake in EEA1 vesicles with time. (a) Mean volume of EEA1 vesicles in PAT1 siRNAs and Control (Ctrl) in the absence of treatment (50 cells analyzed in each condition). (b) Number of colocalized Transferrin/EEA1 vesicles in PAT1 siRNAs and Control (Ctrl) in the absence of treatment. Quantification is presented in vesicle number per cell volume (µm3) at different time points of transferrin uptake (30 cells analyzed in each condition). (c) Size of colocalizing EEA1/Transferrin with time. Representative images of EEA1/Transferrin are presented at 5, 10, 20 min after transferrin uptake in PAT1siRNAs and Control (Ctrl) conditions. Scale bar: 10 µm; Scale bar of enlarged inset:5 µm. Quantification of colocalized EEA1/Transferrin vesicle size at 10 and 20 min for PAT1 siRNAs and control (Ctrl) is expressed in  % (30 cells per condition). *p < 0.05; **p < 0.001 (TIFF 4311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilsizoglu Senol, A., Tagliafierro, L., Gorisse-Hussonnois, L. et al. Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis. Cell. Mol. Life Sci. 76, 4995–5009 (2019). https://doi.org/10.1007/s00018-019-03157-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03157-7

Keywords

Navigation